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Recap

I Stochastic Optimization:

min
x∈Rd

F (x) := Eξ[f(x, ξ)] (SO)

I Finite Sum Optimization (special case):

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x) (FS)
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Example: Supervised Learning

(xi, yi), yi ∼ h(xi)

i = 1, . . . , n

Data

I Linear model: hw(x) = wTx

I Nonlinear model: hw(x) = wTφ(x)

I Multi-layer network model:
hw(x) =WT

3 g2(W
T
2 g1(W

T
1 x))

Model

min
w

Ex,y [`(hw(x), y)]

min
w

1

n

n∑
i=1

`(hw(xi), yi)

Optimization
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The Zoo of Stochastic Gradient Based Methods

I SGD

I Adaptive SGD

I Parallelizing SGD

I SGD with variance
reduction
(This Lecture!)

I ... ...
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Pros and Cons of SGD

Pros:

I Cheap iteration cost

I Unbiased stochastic gradient

I Global convergence for convex
functions

I Unimprovable in the worst case with
general stochastic oracles

Cons:

I Variance in stochastic gradient

I Diminishing stepsize

I Slow convergence

I Tuning stepsize
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SGD Recap

min
x∈Rd

F (x) := Eξ[f(x, ξ)]

SGD: xt+1 = xt − γt∇f(xt, ξt), where ξt
iid∼ P (ξ)

Convex Strongly Convex

Stepsize γt ∝ 1/
√
t γt ∝ 1/(µt)

Convergence rate O
(

1√
t

)
O
(
1
t

)
Sample complexity O

(
1
ε2

)
O
(
1
ε

)
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Generic Adaptive Scheme

The following scheme encapsulates popular adaptive methods in a unified framework.
[Reddi, Kale, & Kumar (2018)]

gt = ∇f(xt, ξt)

mt = φt(g1, . . . ,gt)

Vt = ψt(g1, . . . ,gt)

x̂t = xt − αtV −1/2t mt

xt+1 = argmin
x∈X

{(x− x̂t)
TV

1/2
t (x− x̂t)}
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Popular Examples

I SGD
φt(g1, . . . ,gt) = gt, ψt(g1, . . . ,gt) = I

I AdaGrad

φt(g1, . . . ,gt) = gt, ψt(g1, . . . ,gt) =
diag(

∑t
τ=1 g

2
τ )

t

I Adam

φt(g1, . . . ,gt) = (1− α)

t∑
τ=1

αt−τgτ , ψt(g1, . . . ,gt) = (1− β)diag(

t∑
τ=1

βt−τg2
τ )

In other words, mt = αmt−1 + (1− α)gt, Vt = βVt−1 + (1− β)diag(g2
t ).
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ADAM

ADAM ≈ RMSProp + Momentum (>100K citations)


vt = βvt−1 + (1− β)∇f(xt, ξt)

�2

mt = αmt−1 + (1− α)∇f(xt, ξt)

xt+1 = xt − γ0
ε+
√
ṽt
� m̃t

I Exponential decay of previous information mt,vt.

I Note ṽt = vt
1−βt and m̃t = mt

1−αt are bias-corrected estimates.

I In practice, α and β are chosen to be close to 1.
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The Non-Convergence of Adam

Counterexample: consider a one-dimensional problem:

X = [−1, 1], f(x, ξ) =

{
Cx, if ξ = 1

−x, if ξ = 0
, P (ξ = 1) = p =

1 + δ

C + 1
.

I Here F (x) = E[f(x, ξ)] = δx and x∗ = −1.

I Adam step is xt+1 = xt − γ0∆t with ∆t = αmt+(1−α)gt√
βvt+(1−β)g2t

I For large enough C > 0, one can show that E[∆t] ≤ 0.

I Adam steps keep drifting away from the optimal solution x∗ = −1.
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A Convergent Adam-type Algorithm

AMSGrad [Reddi, Kale, & Kumar (2018)]

I Use maximum value for normalizing the running average of the gradient.

I Ensure non-increasing stepsize and avoid pitfalls of Adam and RMSProp.

I Allow long-term memory of past gradients.
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Adaptive SGD Recap

Theory:

I Some theory, more complicated analysis

I Comparable convergence rates to SGD

Practice:

I Less sensitive to parameter tuning and adapt to sparse gradients.

I Outperform SGD for NLP tasks, training generative adversarial networks (GANs),
deep reinforcement learning, etc., but are less effective in computer vision tasks.

I Tend to overfit and generalize worse than their non-adaptive counterparts [Wil17].

I Often display faster initial progress on the training set, but their performance
quickly plateaus on the testing set [Wil17].
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Modern Big Data Challenge

Big n !
I Cannot afford computing the

gradient

I Cannot afford going through
data many times
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SGD vs. GD for Finite Sum Problem

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x)

Table: Complexity for smooth and strongly convex problems: κ = L/µ

iteration complexity per-iteration cost total cost

GD

SGD

I GD converges faster but with expensive iteration cost

I SGD converges slowly but with cheap iteration cost

I SGD is more appealing for large n and moderate accuracy ε.
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Can we achieve both worlds?
I GD: deterministic, linear rate, O(n) iteration cost, fixed stepsize.

I SGD: stochastic, sublinear rate, O(1) iteration cost, diminishing stepsize.

Figure from Bach’s NeurIPS 2016 tutorial
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Observation: reducing variance is the key

Recall that when using fixed stepsize

E[F (xt)− F (x∗)] ≤ γLσ2

2µ
+ (1− µγ)t−1(F (x1)− F (x∗))

I σ2 relates to the variance of gradient estimator such that:

E[‖∇fit(xt)−∇F (xt)‖22] ≤ σ2.

Q: Can we design gradient estimators with reduced variance?
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Stochastic Varianced-reduced Methods

Stochastic variance-reduced methods are as cheap to update as SGD, but have as fast
convergence as full gradient descent.

Popular algorithms:

I SAG (stochastic average gradient) [Le Roux et al., 2012]

I SVRG (stochastic variance-reduced gradient) [Johnson and Zhang, 2013]

I SDCA (stochastic dual coordinate ascent) [Shalev-Shwartz and Zhang, 2013]

I SAGA (stochastic average gradient amélioré) [Defazio et al., 2014]

I Many many others: MISO, Finito, Catalyst-SVRG, S2GD, etc.

I Recent variants for nonconvex setting: SPIDER, SARAH, STORM, PAGE, etc.
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Preview of VR Methods

Algorithm # of Iterations Per-iteration Cost

GD O
(
κ log 1

ε

)
O(n)

SGD O
(
κ
ε

)
O(1)

VR O
(
(n+ κ) log 1

ε

)
O(1)

Table: Complexity of strongly convex and smooth finite-sum optimization
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Preview of VR Methods

Figure: Logistic regression on mushrooms dataset with n = 8124 [Gow20]
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Classical Variance Reduction Techniques

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x)

I Mini-batching: Use the average of gradients from a random subset

xt+1 = xt − γt
1

|Bt|
∑
i∈Bt

∇fi(xt)

NB: Variance reduction comes at a computational cost.

I Momentum: add momentum to the gradient step

xt+1 = xt − γtm̂t, where m̂t = c ·
∑t

τ=1
αt−τ∇fiτ (xτ )

NB: Here mt is the weighted average of the past stochastic gradients.
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A Modern Variance Reduction Technique

Suppose we want to estimate θ = E[X], X is a random variable.
Consider the point estimator for θ:

Θ̂ := X − Y

I E[X − Y ] = θ if and only if E[Y ] = 0

I V[X − Y ] is less than V[X] if Y is highly positively correlated with X.
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A Modern Variance Reduction Technique

Suppose X is positively correlated with Y and we can compute E[Y ].

Point Estimator:

Θ̂α = α(X − Y ) + E[Y ], (0 ≤ α ≤ 1).

E[Θ̂α] = αE[X] + (1− α)E[Y ]

V[Θ̂α] = α2(V[X] +V[Y ]− 2Cov[X,Y ])

I If covariance is sufficiently large, then V[Θ̂α] ≤ V[X].
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Clicker Question

Recall Θ̂α = α(X − Y ) + E[Y ] and Cov[X,Y ] > 0.
Which one of the following statement about Θ̂α is NOT correct?

A. If α = 1, the estimator is unbiased.

B. If E[Y ] = E[X], the estimator is unbiased for any α.

C. The bias increases as α increases from 0 to 1.

D. The variance increases as α increases from 0 to 1.

ETHZ Optimization for Data Science ETH Zürich, FS 2022 (261-5110-00L) 25/46



Motivation

Q: Can we design cheap gradient estimators with reduced variance?

Key Idea: if xt is not too far away from previous iterates, then we can leverage
previous gradient information to construct positively correlated control variates.

I SGD: estimate ∇F (xt) by ∇fit(xt)
I VR: estimate ∇F (xt) by gt := α(∇fit(xt)− Y ) + E[Y ] such that

E[‖gt −∇F (xt)‖2]→ 0, as t→∞. (VR property)

So how to design Y ?
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Design Ideas

Goal: Construct Y that is positively correlated to X = ∇fit(xt):

Choice I: Y = ∇fit(x?), where x? is the optimal solution

I E[Y ] = 0, unrealistic but conceptually useful

Choice II: Y = ∇fit(x̄it), where x̄i is the last point for which we evaluated ∇fi(x̄i)

I E[Y ] = 1
n

∑n
i=1∇fi(x̄i), requires storage of {x̄i}ni=1 or {∇fi(x̄i)}ni=1

Choice III: Y = ∇fit(x̃), where x̃ is some fixed reference point

I E[Y ] = 1
n

∑n
i=1∇fi(x̃), requires computing the full gradient at x̃
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Variance Reduction Techniques for Finite Sum Problems

Goal: estimate θ = ∇F (xt), X = ∇fit(xt)

I SGD: gt = ∇fit(xt) [α = 1, Y = 0]

I SAG: gt = 1
n(∇fit(xt)− vit) + 1

n

∑n
i=1 vi [α = 1

n , Y = vit ]

I SAGA: gt = (∇fit(xt)− vit) + 1
n

∑n
i=1 vi [α = 1, Y = vit ]

Here {vi, i = 1, . . . , n} are the past stored gradients for each component.

I SVRG: gt = ∇fit(xt)−∇fit(x̃) +∇F (x̃) [α = 1, Y = ∇fit(x̃)]
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Stochastic Average Gradient (SAG)
Idea: keep track of the average of vi as an estimate of the full gradient

gt =
1

n

n∑
i=1

vti ≈ 1

n

n∑
i=1

∇fi(xt) = ∇F (xt)

I The past gradients are updated as:

vti =

{
∇fit(xt), if i = it,

vt−1i , if i 6= it.

I Equivalently, we have

gt = gt−1 −
1

n
vt−1it

+
1

n
∇fit(xt)
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Stochastic Average Gradient (SAG, continued)

xt+1 = xt −
γ

n

n∑
i=1

vti, where vti =

{
∇fit(xt), if i = it

vt−1i , otherwise

Algorithm SAG (Le Roux et al., 2012)

1: Initialize vi = 0, i = 1, . . . , n
2: for t = 1, 2, . . . , T do
3: Randomly pick it ∈ {1, 2, . . . , n}
4: gt = gt−1 − 1

nvit
5: vit = ∇fit(xt)
6: gt = gt + 1

nvit
7: xt+1 = xt − γgt
8: end for

I Biased gradient

I Cheap iteration cost

I O(nd) memory cost

I Hard to analyze
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Stochastic Average Gradient (SAG, continued)

I Linear convergence: The first stochastic methods to enjoy linear rate using a
constant stepsize for strongly-convex and smooth objectives.

If F is µ-strongly convex and each fi is Li-smooth and convex,
setting γ = 1/(16Lmax), one can show that

E[F (xt)− F (x∗)] ≤ C ·
(

1−min{ 1

8n
,

µ

16Lmax

}
)t
.

Here Lmax := max{L1, . . . , Ln}.
I Memory cost: O(n) times higher than SGD/SVRG

I Per-iteration cost: one gradient evaluation

I Total complexity: O
(
(n+ κmax) log(1ε )

)
.
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SAGA

SAGA (Defazio, Bach, Lacoste-Julien, 2016):

xt+1 = xt − γ

[
(∇fit(xt)− vt−1it

) +
1

n

n∑
i=1

vt−1i

]

I Unbiased update, while SAG is biased

I Same O(nd) memory cost as SAG

I Similar linear convergence rate as SAG, but has a much simpler proof
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Stochastic Variance Reduced Gradient (SVRG)

Key idea: Build covariates based on fixed reference point; balance the frequency of
reference point update and the variance reduction.

Algorithm Stochastic Variance Reduced Gradient (Johnson & Zhang ’13)

1: for s = 1, 2, . . . do
2: Set x̃ = x̃s−1 and compute ∇F (x̃) = 1

n

∑n
i=1∇fi(x̃) (update snapshot)

3: Initialize x0 = x̃
4: for t = 0, 1, . . . ,m− 1 do
5: Randomly pick it ∈ {1, 2, . . . , n} and update
6: xt+1 = xt − η (∇fit(xt)−∇fit(x̃) +∇F (x̃)) (cheap cost)
7: end for
8: Update x̃s = 1

m

∑m−1
t=0 xt

9: end for
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SVRG: Key Features

Intuition: the closer x̃ is to xt, the smaller the variance of the gradient estimator

E[‖gt −∇F (xt)‖2] ≤ E[‖∇fit(xt)−∇fit(x̃)‖2] ≤ L2
max‖xt − x̃‖2

Two-loop structure:

I Outer loop: update reference point and compute its full gradient at O(n) cost

I Inner loop: update iterates with variance-reduced gradient for m steps

I Total of O(n+ 2m) component gradient evaluations at each epoch

Compare to SAG/SAGA

(+) Cheap memory cost, no need to store past gradients or past iterates

(−) More parameter tuning, two gradient computation per iteration

ETHZ Optimization for Data Science ETH Zürich, FS 2022 (261-5110-00L) 35/46



Convergence of SVRG
Theorem 7.1 (Johnson & Zhang, 2013)

Assume each fi(x) is convex and Li-smooth, F (x) is µ-strongly con-
vex. Assume m is sufficiently large and η < 1

2Lmax
such that

ρ = 1
µη(1−2ηLmax)m

+ 2ηLmax

1−2ηLmax
< 1, then

E[F (x̃s)− F (x∗)] ≤ ρs [F (x̃0)− F (x∗)].

I Linear convergence: choose m = O(Lmax
µ ), η = O( 1

Lmax
) such that ρ ∈ (0, 12).

I Total complexity:

O

(
(2m+ n) log

1

ε

)
= O

((
n+

Lmax

µ

)
log

1

ε

)
.
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SVRG vs. SAG/SAGA

Table: Comparisons between SVRG and SAG/SAGA

SVRG SAG/SAGA

memory cost O(d) O(nd)
epoch-based yes no

# gradients per step at least 2 1
parameters stepsize & epoch length stepsize

unbiasedness yes yes/no
total complexity O

(
(n+ κmax) log 1

ε

)
O
(
(n+ κmax) log 1

ε

)
Loopless-SVRG: [Hofmann et al., 2015][Kovalev el al., 2020]
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Numerical Illustration

Figure: Numerical illustration among GD, SGD, SVRG on logistic regression.
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Convergence Analysis of SVRG: Key Lemma

Lemma 7.2 (Exercise, property of smoothness)

1

n

n∑
i=1

‖∇fi(x)−∇fi(x?)‖22 ≤ 2Lmax(F (x)− F (x?))

Lemma 7.3 (Bound of variance)

Denote gt = ∇fit(xt)−∇fit(x̃) +∇F (x̃). We have

E[‖gt‖22] ≤ 4Lmax[F (xt)− F (x∗) + F (x̃)− F (x∗)].
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Convergence Analysis of SVRG: Proof

For notation simplicity, denote L = Lmax. From Lemma 7.3, we have

E
[
‖xt+1 − x∗‖22

]
= ‖xt − x∗‖22 − 2η(xt − x∗)TE [gt] + η2E

[
‖gt‖22

]
≤ ‖xt − x∗‖22 − 2η(1− 2Lη)(F (xt)− F (x∗)) + 4Lη2 [F (x̃)− F (x∗)]

We can then establish the contraction after telescoping the sum and invoking the
definition for x̃.

ETHZ Optimization for Data Science ETH Zürich, FS 2022 (261-5110-00L) 40/46



Convergence Analysis of SVRG: Proof (continued)
It follows that

E
[
‖xm − x∗‖2

]
+ 2η(1− 2Lη)mE [f(x̃s)− f(x∗)]

≤ E
[
‖xm − x∗‖2

]
+ 2η(1− 2Lη)

∑m−1

t=0
E [f(xt)− f(x∗)] (by convexity)

≤ E
[
‖x0 − x∗‖2

]
+ 4Lmη2E

[
f(x̃s−1)− f(x∗)

]
(by telescoping)

≤ E
[
‖x̃s−1 − x∗‖2

]
+ 4Lmη2E

[
f(x̃s−1)− f(x∗)

]
(by definition of x0)

≤ 2

µ
E
[
f(x̃s−1)− f(x∗)

]
+ 4Lmη2E

[
f(x̃s−1)− f(x∗)

]
(by µ strongly convexity)

This further implies

E [f(x̃s)− f(x∗)] ≤
[

1

µη(1− 2Lη)m
+

2Lη

1− 2Lη

]
E
[
f(x̃s−1)− f(x∗)

]
.
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Summary: Finite Sum Optimization

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x)

(fi is Li-smooth and convex, F is L-smooth and µ-strongly convex)

Algorithm # of Iterations Per-iteration Cost

GD O
(
κ log 1

ε

)
O(n)

SGD O
(
κmax
ε

)
O(1)

SAG/SAGA/SVRG O
(
(n+ κmax) log 1

ε

)
O(1)

Table: Complexity of finite-sum optimization, κ = L
µ , κmax = Lmax

µ
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Remarks

I Variance reduction technique is crucial for finite sum problems.

I In general, L ≤ Lmax ≤ nL. VR methods are always superior in terms of total
runtime than GD.

I If Li = L,∀i, then κ = κmax, VR methods are much faster than GD especially
when κ = O(n).

I SGD has much worse dependency on ε than VR methods, which explain its poor
performance when ε is small.
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Can we further improve the VR methods?

I Non-uniform sampling: improve to O
(
(n+ κavg) log 1

ε

)
P (it = i) =

Li∑n
i=1 Li

I Incorporating acceleration: can improve to O
(
(n+

√
nκmax) log 1

ε

)
.

I Lower complexity bound: O
(
(n+

√
nκmax) log 1

ε

)
for the strongly-convex and

smooth finite-sum problems considered
(Woodworth and Srebro, 2016; Lan and Zhou, 2018)
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Limitations?
I Challenges with practical implementations: learning rate and sampling
I Less advantage beyond smooth or strongly convex objectives or finite-sum setting
I VR may be ineffective for training neural networks [Defazio and Bottou, 2019].
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