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Recap of (Adaptive) SGD and Preview
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Recap

» Stochastic Optimization:

min - F(x) = Be[f(x, )]

» Finite Sum Optimization (special case):

min  F(x) = — Zfz(x)

x€R4 n <
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Example: Supervised Learning

> Linear model: hy (x) = w’x

> Nonlinear model: Ay (x) = w” ¢(x)

(Xi,Yi), yi ~ h(x:)

i =1,...
B > Multi-layer network model:
hw(x) = Wy g2(W5 g1 (W1 x))
Data Model
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n%‘i’n Ex,y [‘e(hw(x)v y)]

Optimization



The Zoo of Stochastic Gradient Based Methods
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» SGD
» Adaptive SGD
» Parallelizing SGD

» SGD with variance
reduction
(This Lecture!)
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Pros and Cons of SGD

Pros:
» Cheap iteration cost
» Unbiased stochastic gradient

» Global convergence for convex
functions

» Unimprovable in the worst case with
general stochastic oracles
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Cons:
» Variance in stochastic gradient
» Diminishing stepsize
» Slow convergence

» Tuning stepsize



SGD Recap

min  F(x) := E¢[f(x,§)]

x€R4

SGD: X1 =Xt — %V f(x¢, &), where & “ P(§)

Convex | Strongly Convex
Stepsize Yo 1/VE | v oc 1/ (ut)
Convergence rate 0] (%) 0] (%)
Sample complexity | O (&) o)
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Generic Adaptive Scheme

The following scheme encapsulates popular adaptive methods in a unified framework.
[Reddi, Kale, & Kumar (2018)]

gt = Vf(x, &)
m; = ¢t(gl7 O )gt)

‘/;5 = 1/1t(g17 RO 7gt)
/2

~ =1
Xt = Xt — Oét‘/t my

X¢41 = argmin{(x — f(t)Tth/Q(x —X¢)}
xeX
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Popular Examples

» SGD
o8l -,8t) =8, Ve(gr,....8) =1
» AdaGrad
diag tT, g?
Qst(glv"'agt):gt? ¢t(g17"'7gt):(ztl)
» Adam
t t
$u(gr,. . 8) = (1—0a)) o' g, ti(gr,....8) = (1— pB)diag(d_ B "g?)
T=1 T=1

In other words, m; = amy_1 + (1 — a)gs, Vi = Vi1 + (1 — B)diag(g?).
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ADAM

ADAM ~ RMSProp + Momentum (>100K citations)

Vi = Bvi1 + (1= B)Vf(x¢, &)
m; =oamy i+ (1—a)VFi(xe,&)
Xtt1 =Xt—s+%®ﬁlt

» Exponential decay of previous information my, v;.

m
11—«

» Note v; = 1:’—}% and m; = ™ are bias-corrected estimates.

» In practice, a and 3 are chosen to be close to 1.
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The Non-Convergence of Adam

Counterexample: consider a one-dimensional problem:

Cx, ife=1 1+6

X:[_171]7 f(a"aé):{_m |f§:0’P<€:1):p:ﬁ

» Here F(x) = E[f(x,§)] = 0x and z* = —1.

» Adam step is 1411 = oy — Y0y with Ay = amit(1-a)gr

Bui+(1-B)g7
» For large enough C > 0, one can show that E[A;] < 0.

» Adam steps keep drifting away from the optimal solution z* = —1.
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A Convergent Adam-type Algorithm
AMSGrad [Reddi, Kale, & Kumar (2018)]

Algorithm 2 AMSGRAD

Input: z; € F, step size {a}i—1, {Bit}ie1, P2
Set mog =0, v0 =0and 99 =0
fort =1to7 do

gt =V fe(x)

my = Breme—1 + (1 — P1e)ge

vy = Bovi—1 + (1 — ,32)9}2

’LA)t = max(f}t_l, ’Ut) and ‘/t = dlag(ﬁt)

Ti41 = H]:7\/V—t(96t — i /V/0r)

end for

» Use maximum value for normalizing the running average of the gradient.

» Ensure non-increasing stepsize and avoid pitfalls of Adam and RMSProp.

> Allow long-term memory of past gradients.
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Adaptive SGD Recap

Theory:

» Some theory, more complicated analysis

» Comparable convergence rates to SGD
Practice:

P Less sensitive to parameter tuning and adapt to sparse gradients.

» Outperform SGD for NLP tasks, training generative adversarial networks (GANs),
deep reinforcement learning, etc., but are less effective in computer vision tasks.

» Tend to overfit and generalize worse than their non-adaptive counterparts [Will7].

» Often display faster initial progress on the training set, but their performance
quickly plateaus on the testing set [Will7].
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Modern Big Data Challenge

Estimated amount of data created
on the internet in one minute

IA Minute on the Internet in 2021
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SGD vs. GD for Finite Sum Problem

min  F(x) := ngz(x)

x€R4

Table: Complexity for smooth and strongly convex problems: x = L/u

iteration complexity | per-iteration cost | total cost

GD
SGD

> GD converges faster but with expensive iteration cost
» SGD converges slowly but with cheap iteration cost

» SGD is more appealing for large n and moderate accuracy e.
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Can we achieve both worlds?

» GD: deterministic, linear rate, O(n) iteration cost, fixed stepsize.

» SGD: stochastic, sublinear rate, O(1) iteration cost, diminishing stepsize.

stochastic

deterministic

log(excess cost)

hybri

time
Figure from Bach’'s NeurlPS 2016 tutorial
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Observation: reducing variance is the key

Recall that when using fixed stepsize

vLo?

E[F(x) — F(x")] < o

+ (1= ) (F(x) = F(x"))

» o7 relates to the variance of gradient estimator such that:

B[V fi,(x¢) = VF(x)|3] < o*.

Q: Can we design gradient estimators with reduced variance?
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Stochastic Varianced-reduced Methods

Stochastic variance-reduced methods are as cheap to update as SGD, but have as fast
convergence as full gradient descent.

Popular algorithms:

» SAG (stochastic average gradient) [Le Roux et al., 2012]

» SVRG (stochastic variance-reduced gradient) [Johnson and Zhang, 2013]

» SDCA (stochastic dual coordinate ascent) [Shalev-Shwartz and Zhang, 2013]
» SAGA (stochastic average gradient amélioré) [Defazio et al., 2014]

» Many many others: MISO, Finito, Catalyst-SVRG, S2GD, etc.

» Recent variants for nonconvex setting: SPIDER, SARAH, STORM, PAGE, etc.
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Preview of VR Methods

Algorithm | # of Iterations | Per-iteration Cost
GD O (rlog %) O(n)
SGD O (%) 0(1)
VR O ((n+ k) log?l) 0(1)

Table: Complexity of strongly convex and smooth finite-sum optimization
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Preview of VR Methods

Distance to optimum
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Figure: Logistic regression on mushrooms dataset with n = 8124 [Gow20]
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Lecture Qutline

Variance Reduction Techniques
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Classical Variance Reduction Techniques

x€R4

. 1
min  F(x) := - Zfz(x)
=1
» Mini-batching: Use the average of gradients from a random subset

1
Xi+1 = Xt — ’Yt@ Z Vfi(xt)

i€ By

NB: Variance reduction comes at a computational cost.
» Momentum: add momentum to the gradient step

t
Y > t—1
X1 = X¢ — My, where my = ¢ - E e Vfi. (%)

NB: Here m; is the weighted average of the past stochastic gradients.
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A Modern Variance Reduction Technique

Suppose we want to estimate § = E[X], X is a random variable.
Consider the point estimator for 6:

O =X-Y

» EX —Y]=0ifand only if E[Y] =0
» V[X — Y] is less than V[X] if Y is highly positively correlated with X.
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A Modern Variance Reduction Technique

Suppose X is positively correlated with Y and we can compute E[Y].

Point Estimator:

V[O,] = o?(V[X] + V[Y] — 2Cov[X, Y])

> If covariance is sufficiently large, then V[0,] < V[X].
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Clicker Question

Recall ©, = a(X —Y) + E[Y] and Cov[X,Y] > 0.
Which one of the following statement about O, is NOT correct?

A. If o = 1, the estimator is unbiased.
B. If E[Y] = E[X], the estimator is unbiased for any a.
C. The bias increases as « increases from 0 to 1.

D. The variance increases as « increases from 0 to 1.
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Motivation

Q: Can we design cheap gradient estimators with reduced variance?

Key ldea: if x; is not too far away from previous iterates, then we can leverage
previous gradient information to construct positively correlated control variates.

» SGD: estimate VF(x;) by V fi,(x¢)
» VR: estimate VF(x¢) by g: := a(Vfi,(x¢) = Y) + E[Y] such that

El|g: — VF(x:)||?] = 0, as t — oc. (VR property)

So how to design Y7
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Design Ideas

Goal: Construct Y that is positively correlated to X = V f;, (x¢):

Choice |1 Y = V f;,(x*), where x* is the optimal solution

» E[Y] =0, unrealistic but conceptually useful

Choice II: Y = V f;,(X;,), where X; is the last point for which we evaluated V f;(x;)

> E[Y] =157, Vfi(x:), requires storage of {%;}"_; or {Vfi(x:)}1,

Choice Ill: Y = V f;,(X), where X is some fixed reference point

> E[Y] = %Z?:l V fi(X), requires computing the full gradient at x
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Lecture Qutline

Stochastic Variance-reduced Methods
SAG/SAGA
SVRG
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Variance Reduction Techniques for Finite Sum Problems

Goal: estimate § = VF(x;), X = V fi,(x¢)

> SGD: gt = Vi, (xt) [@=1,Y =0]
> SAG: g = (VY fi, (%) = Vi) + 3 21y Vi [o =5,V =vi]
> SAGA: g = (vfi/,(xt) - V’il,) + Tll Z?:] Vi [Oé =1Y = Vit]

Here {v;,i =1,...,n} are the past stored gradients for each component.

> SVRG: g = Vf, (x:) — Vi, (%) + VF(%) [0 =1,Y = V(%]
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Stochastic Average Gradient (SAG)

Idea: keep track of the average of v; as an estimate of the full gradient

1 & 1 &
g = nz;vf ~ nz;Vfi(xt) = VF(xy)

» The past gradients are updated as:

t {szt (Xt), If 7, = it,

i t—1 . .
v, o, if 1 £ 4.

> Equivalently, we have

1, 1
gt =81 — ;VZ 't ;Vfit (x¢)
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Stochastic Average Gradient (SAG, continued)

n - o o

_ ¥ twh ¢ Vi (xe), ifi=1y

Xt_l,_l = Xt — E V’L" whnere V,L' = th .
otherwise

t—1
i=1 Vi

7 )

Algorithm SAG (Le Roux et al., 2012)

1: Initialize v; =0,i=1,...,n . .
2 fort=1,2,...,T do » Biased .grad|fent
3: Randomly pick i; € {1,2,...,n} > Cheap iteration cost

4 g =81— Vi » O(nd) memory cost
5 Vi, = Vfi(x) » Hard to analyze

6: gt =g+ +v;,

& Xi+1 = Xt — V8t

8: end for
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Stochastic Average Gradient (SAG, continued)

> Linear convergence: The first stochastic methods to enjoy linear rate using a
constant stepsize for strongly-convex and smooth objectives.

If F is u-strongly convex and each f; is L;-smooth and convex,
setting v = 1/(16L,,.,), one can show that

E[F(x;) — F(x*)] < C- (1 — min{8in, 161’11% }) :

Here L,,.. := max{L1,...,L,}.
» Memory cost: O(n) times higher than SGD/SVRG
> Per-iteration cost: one gradient evaluation
> Total complexity: O ((n + Kyax) log(2)) -

ETHZ Optimization for Data Science ETH Ziirich, FS 2022 (261-5110-00L) 32/46



SAGA

SAGA (Defazio, Bach, Lacoste-Julien, 2016):

n

_ 1 _
Xe41 =%t — 7 [ (Vi (xe) = Vi) + - dovit!
=1

» Unbiased update, while SAG is biased
» Same O(nd) memory cost as SAG

» Similar linear convergence rate as SAG, but has a much simpler proof
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Stochastic Variance Reduced Gradient (SVRG)

Key idea: Build covariates based on fixed reference point; balance the frequency of
reference point update and the variance reduction.

Algorithm Stochastic Variance Reduced Gradient (Johnson & Zhang '13)
1: fors=1,2,... do

2: Set X = %*~! and compute VF(x) = 1 3" | V£i(X) (update snapshot)
3 Initialize xg = x

4 fort=0,1,...,m—1do

5: Randomly pick i; € {1,2,...,n} and update

6: xi+1 =x¢ — 0 (Vfi,(x¢) — Vfi,(X) + VF(X)) (cheap cost)
7 end for

8 Update x* = L "7 U

9: end for
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SVRG: Key Features

Intuition: the closer X is to x¢, the smaller the variance of the gradient estimator

Elllg: — VE(x)|?] < B[V fi, (x¢) = Vi, (R)%] < Lilxe — x|

max
Two-loop structure:

» Outer loop: update reference point and compute its full gradient at O(n) cost
» Inner loop: update iterates with variance-reduced gradient for m steps

» Total of O(n + 2m) component gradient evaluations at each epoch
Compare to SAG/SAGA

(+) Cheap memory cost, no need to store past gradients or past iterates

(=) More parameter tuning, two gradient computation per iteration
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Convergence of SVRG
Theorem 7.1 (Johnson & Zhang, 2013)

Assume each f;(x) is convex and L;-smooth, F(x) is p-strongly con-
vex. Assume m is sufficiently large and n < ﬁ such that

_ 1 277L7na1:
P = —Zira) = T2l 1, then

E[F(X*) = F(x")] < p* [F(X°) = F(x")].

» Linear convergence: choose m = O(%), n= O(ﬁ) such that p € (0, 3).

> Total complexity:

0 ((2m+n)1og1) -0 <<n—|—LZax>logi> .
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SVRG vs. SAG/SAGA

Table: Comparisons between SVRG and SAG/SAGA

SVRG \ SAG/SAGA
memory cost O(d) O(nd)
epoch-based yes no

# gradients per step at least 2 1
parameters stepsize & epoch length stepsize
unbiasedness yes yes/no
total complexity O ((n + Fupax) log %) O ((n + Fuax) log %)

Loopless-SVRG: [Hofmann et al., 2015][Kovalev el al., 2020]
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Numerical lllustration

Objective Error

1019

11
10 b

— 5GD
— SVRG

10 20

Figure: Numerical illustration among GD, SGD, SVRG on logistic regression.
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Convergence Analysis of SVRG: Key Lemma

Lemma 7.2 (Exercise, property of smoothness)

S IVAG) = VG < 2L F() — F(c)
=l

Lemma 7.3 (Bound of variance)
Denote gy = V f;,(x') — V fi,(X) + VF(xX). We have

Efllgel3] < 4LnalF (%) — F(x*) + F(X) — F(x")].
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Convergence Analysis of SVRG: Proof

For notation simplicity, denote L = L,,,,. From Lemma 7.3, we have

E [[x¢+1 — x"[13]
= [lx¢ — x*||3 — 2n(x — x*) " E[ge] + n”E [|lg:3]
< e — x5 — 20(1 — 2Ln) (F (%) — F(x")) + 4L’ [F(%) — F(x")]

We can then establish the contraction after telescoping the sum and invoking the
definition for x.
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Convergence Analysis of SVRG: Proof (continued)
It follows that

E [[lxm — x| +2n(1 — 2Ln)mE [f(%°) — f(x")]

<E [|Ixm — x*||2] +2n(1 — 2L77)Z:;1E [f(x¢) — f(x")] (by convexity)
< E [[xo — x*[|’] +4Lmn’E [f(x°~") — f(x*)] (by telescoping)
SE (|5 — 2P + 4Lmn’E [f(x°7) — f(x)] (by definition of xq)

z]E [f(fcs_l) - f(x9] + ALmn’E [f(x*~ b — f(x")] (by p strongly convexity)

This further implies

1 2Ln

~ [un(1 —2Ln)m + 1—2Ln I [f(i#l) B f(X*)] '
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Summary: Finite Sum Optimization

n

- 1
min - F(x) = o ; fi(x)

(fi is Li-smooth and convex, F'is L-smooth and p-strongly convex)

Algorithm # of Iterations Per-iteration Cost
GD O (rklog?) O(n)
SGD O (fmax) O(1)
SAG/SAGA/SVRG | O ((n + Kumax) log 1) O(1)

Table: Complexity of finite-sum optimization, Kk = % Ky = Lmax

ETHZ Optimization for Data Science ETH Ziirich, FS 2022 (261-5110-00L) 42/46



Remarks

» Variance reduction technique is crucial for finite sum problems.

» In general, L < L., <nL. VR methods are always superior in terms of total
runtime than GD.

> If L; = L,Vi, then kK = K., VR methods are much faster than GD especially
when k = O(n).

» SGD has much worse dependency on € than VR methods, which explain its poor
performance when ¢ is small.
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Can we further improve the VR methods?

» Non-uniform sampling: improve to O ((n + Kave) log %)

Z?:l L;

» Incorporating acceleration: can improve to O ((n + /NFmay ) log %)

P(iy = i)

> Lower complexity bound: O ((n + /NEmax ) 10g %) for the strongly-convex and
smooth finite-sum problems considered
(Woodworth and Srebro, 2016; Lan and Zhou, 2018)
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Limitations?
» Challenges with practical implementations: learning rate and sampling

» Less advantage beyond smooth or strongly convex objectives or finite-sum setting
» VR may be ineffective for training neural networks [Defazio and Bottou, 2019].
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