Damiano Meier, Lino Hofstetter

A Tutorial on the Non-Asymptotic Theory of System Identification AI for Science Seminar FS2024 Ziemann, Tsiamis, Lee, Jedra, Matni & Pappas

Machine Learning is everywhere…

… but it isn't perfect!

GOOGLE SELF-DRIVING CAR GETS INTO
AN ACCIDENT INVOLVING INJURIES

Go-gle

GOOGLE SELF DRIVING CAR CRASHES INTO A BUS

Mark Beach

NEW VIDEO DRIVERLESS UBER CAR INVOLVED IN CRASH IN TEMPE **TAKING ACTION POLICE SAY OTHER DRIVER FAILED TO YIELD**

System Identification

- **• Energy Optimization**: Efficient energy use in buildings
- **• Adaptive Suspensions**: Vehicles adjusting to road conditions
- **• Financial Markets**: Adapting to market fluctuations

• Instable Energy Grid, Car Crashes & Financial Loss

The Paper

Electrical Engineering and Systems Science > Systems and Control

[Submitted on 7 Sep 2023]

A Tutorial on the Non-Asymptotic Theory of System Identification

Ingvar Ziemann, Anastasios Tsiamis, Bruce Lee, Yassir Jedra, Nikolai Matni, George J. Pappas

ETHzürich

AI for Science Seminar

Outline

- **• Introduction to System Identification**
- **• Main Result of the Paper**
- **• Proof Outline**
- **• First Step of the Proof in Detail**
- **• Extending the Results**
- **• Discussion**: impact of the paper
- **• Conclusion**: our personal opinion
- **• Questions**

AI for Science Seminar

Introduction to System Identification

Intro to System Identification

AI for Science Seminar

Intro to System Identification

Model: $mg = kx$

Intro to System Identification

Model: $mg = kx$

White Box Approach: Understanding of dynamics of the system

Black Box Approach

Black Box Approach

Black Box Approach

Black Box Approach

What is a linear time-series model?

$Y = \theta^{\star} X + V$

AI for Science Seminar

What is a linear time-series model?

What is a linear time-series model?

Autoregressive Exogenous Models

 $Y_t = \sum A_i^{\star} Y_{t-i} + \sum B_i^{\star} U_{t-j} + W_t$ $i=1$

 $Y_t \in \mathbb{R}^{d_U} :=$ System outputs at time t. $A_i^*, B_i^* :=$ Unkown ARX parameters $U_j :=$ User specified input at step j. $W_t :=$ Noise term at time t.

ARX model as a linear system

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T . Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{\text{op}}^2 \le \frac{C}{\mathsf{SNR}_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\left\|\widehat{\theta}_{T} - \theta^{\star}\right\|_{\text{op}}^{2} \leq \frac{C}{\text{SNR}_{\tau}T} \left((pd_{\text{Y}} + qd_{\text{U}}) \log \frac{pd_{\text{Y}} + qd_{\text{U}}}{\delta} + \log \det \left(\Sigma_{T} \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

where C is a universal constant, i.e., it is independent of system, confidence δ and index τ .

Quality of Approximation

 θ^* := True System Parameters

 $\hat{\theta}$:= Estimated Parameters (LSE)

This term explains how close the approximated parameters are to the true parameters

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horiz**pREREQUISITES** failure probability
0 < δ < 1 and a time index $\tau \geq \max\{p, q\}$. Let $T_{pe}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{SNR_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

where C is a universal constant, i.e., it is independent of system, confidence δ and index τ .

Quality of Approximation

 θ^* := True System Parameters

 $\hat{\theta}$:= Estimated Parameters (LSE)

This term explains how close the approximated parameters are to the true parameters

Main result: says how close the approximation is to the real system for some prerequisites

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{\mathsf{op}}^2 \le \frac{C}{\mathsf{SNR}_{\tau}T} \left(\frac{\left(\overline{pd}_{\mathsf{Y}} + qd_{\mathsf{U}}\right) \log \frac{\overline{pd}_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1}\right) \right), \quad (44)
$$

where C is a universal constant, i.e., it is independent of system, confidence δ and index τ .

ARX System Parameters

$$
p,q,d_y,d_U\\Y_t=\sum_{i=1}^pA_i^\star Y_{t-i}+\sum_{j=1}^qB_i^\star U_{t-j}\,+\,
$$

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{SNR_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

where C is a universal constant, i.e., it is independent of system, confidence δ and index τ .

ARX System Parameters p,q,d_y,d_U

System Assumptions

V.1 Non-explosive system

V.2 Noise is white noise

ARX System Parameters p, q, d_y, d_U

Bound

\n*Let*

\n*output samples*

\n*upitions V.1*, *V.2*

\n*ure probability*

\n
$$
\max\{p, q\}
$$
. Let

\n*ere* T_0 *is defined*

\n*lity at least* $1 - \delta$

- Non-explosive system V. 1
- Noise is white noise $V2$

System Assumptions

Probability that bound holds directly affects the size of the bound

Approximation Quality

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample $(Y_{1:T}, U_{0:T-1})$ be single trajectory inputgenerated by system (38) under Assum some horizon T. Fix a faili for $0 < \delta < 1$ and a time index $\tau \geq 0$ $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\},$ whe in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{SNR_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

ARX System Parameters p, q, d_y, d_U

System Assumptions

- V.I Non-explosive system
- V.2 Noise is white noise

Probability that bound holds directly affects the size of the bound

Approximation Quality

For given parameters, computes after how many time step the bound holds

Required Iterations

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{pe}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{SNR_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

Signal to Noise Ratio

High SNR means good data with small noise

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\rm pe}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{SNR_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

Signal to Noise Ratio

High SNR means good data with small noise

Input-Output Samples

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample $(Y_{1:T}, U_{0:T-1})$ be single trajectory inputgenerated by system (38) under Assum some horizon T. Fix a failu for $0 < \delta < 1$ and a time index $\tau > 0$ $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, whe in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probabili

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{\mathsf{SNR}_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

Signal to Noise Ratio

High SNR means good data with small noise

Input-Output Samples

Noise Covariance Matrices

additional constraint determined by noise in the system

Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T . Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\rm pe}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{\text{op}}^2 \le \frac{C}{\mathsf{SNR}_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{\text{op}}^2 \le \frac{C}{\mathsf{SNR}_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

How can we prove this?

$$
Y_t = \theta^{\star} X_t + V
$$

$$
\theta^{\star} = [A_{1:p}^{\star} B_{1:q}^{\star}]
$$

$$
X_t = [Y_{t-1:t-p}^{\top} U_{t-1:t-q}^{\top}]^{\top}
$$

AI for Science Seminar

1. ARX Model as Linear System

$\label{eq:theta} \widehat{\theta} \in \mathop{\rm argmin}_{\theta \in \mathsf{M}} \frac{1}{T} \sum_{t=1}^T \|Y_t - \theta X_t\|_2^2$

1. ARX Model as Linear System

2. Fix size of system θ and **define the Least Squares Estimator** $M \in \mathbb{R}^{dy \times dx}$

$\widehat{\theta} \in \underset{\theta \in \mathsf{M}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^L \|Y_t - \theta X_t\|_2^2$

 $\widehat{\theta} = \left(\sum_{t=1}^T Y_t X_t^{\mathsf{T}}\right) \left(\sum_{t=1}^T X_t X_t^{\mathsf{T}}\right)^{\mathsf{T}}$

1. ARX Model as Linear System

2. Fix size of system θ and define the Least Squares Estimator $M \in \mathbb{R}^{dy \times dx}$

3. Compute the (existing) **closed form solution**

1. ARX Model as Linear System

2. Fix size of system θ and define the Least Squares Estimator $M \in \mathbb{R}^{dy \times dx}$

3. Compute the (existing) closed form solution

4. Find an expression for the precision of the estimation

1. ARX Model as Linear System

2. Fix size of system θ and define the Least Squares Estimator $M \in \mathbb{R}^{dy \times dx}$

3. Compute the (existing) closed form solution

4. Find an expression for the precision of the estimation

1. ARX Model as Linear System

2. Fix size of system θ and define the Least Squares Estimator $M \in \mathbb{R}^{dy \times dx}$

3. Compute the (existing) closed form solution

5. Analyse the expression to find a bound on the estimation quality

4. Find an expression for the precision of the estimation

1. ARX Model as Linear System

2. Fix size of system θ and define the Least Squares Estimator $M \in \mathbb{R}^{dy \times dx}$

3. Compute the (existing) closed form solution

The trick is to analyse left & right term separately!

Time-Scale Invariant Controls growth

4. Find an expression for the precision of the estimation

5. Analyse the expression to find a bound on the estimation quality

Structure of the Paper

Time-Scale Invariant Controls growth

Section I: Introduction to topic **Section II**: Math Prerequisites **Section III**: Analyse **right term Section IV**: Analyse **left term Section V**: Full proof **Section VI - VII: Extending results**

First Step of Proof in Detail

AI for Science Seminar

AI for Science Seminar

How the **measured data** generated by the system looks, is very important

How the **measured data** generated by the system looks, is very important

How the **measured data** generated by the system looks, is very important

AI for Science Seminar

The constraints can now be defined mathematically

 $\leq 4K^2\log$

$$
\zeta_{t}^{\top}\left(\Sigma+T\widehat{\Sigma}_{T}\right)^{-1/2}\Biggr\|_{\mathsf{op}}^{2}
$$

$$
\mathrm{g}\left(\frac{\det\left(\Sigma+T\widehat{\Sigma}_T\right)}{\det(\Sigma)}\right)+8d_{\mathsf{Y}}K^2\log5+8K^2\log\frac{3}{\delta}\right)
$$

The constraints can now be defined mathematically

$\mathbb{P}[\mathcal{E}_1 \cap \mathcal{E}_2 \cap \mathcal{E}_3] \geq 1 - \delta$ **What can we do with this ?**

This is proven by combining various lemmas from the paper

Theorem V.1 (ARX Finite-Sample Bound). Let $(Y_{1:T}, U_{0:T-1})$ be single trajectory input-output samples generated by system (38) under Assumptions V.1, V.2 for some horizon T. Fix a failure probability $0 < \delta < 1$ and a time index $\tau \geq \max\{p,q\}$. Let $T_{\text{pe}}(\delta,\tau) \triangleq \min\{t : t \geq T_0(t,\delta/3,\tau)\}\$, where T_0 is defined in (46). If $T \geq T_{pe}(\delta, \tau)$, then with probability at least $1 - \delta$

$$
\|\widehat{\theta}_T - \theta^{\star}\|_{op}^2 \le \frac{C}{SNR_{\tau}T} \left((pd_{\mathsf{Y}} + qd_{\mathsf{U}}) \log \frac{pd_{\mathsf{Y}} + qd_{\mathsf{U}}}{\delta} + \log \det \left(\Sigma_T \Sigma_{\tau}^{-1} \right) \right), \quad (44)
$$

where C is a universal constant, i.e., it is independent of system, confidence δ and index τ .

This bound also holds with probability at least $1 - \delta$

 $\left(\Sigma_T \Sigma_{\tau}^{-1}\right)\right), \quad (44)$

We can show that if the union of the three events holds, the main result holds

Extending the Result

- **• Control Systems**
	- **• Climate Modeling**

Extending the Result

- Theorem be extended to **state space models**
- Paper also derives result for less constraints on matrix θ
- Presents ideas for extending results to **non-linear systems**

Discussion

- **• Big contribution** to machine learning for control theory
- The proven bound on the approximation ratio is nearly optimal
- The constraints are realistic
- Therefore the LSE based approach for linear system identification can be used and it's performance is now well understood

- However it still remains open how good LSE is for non-linear systems
- Most systems are non-linear

Conclusion - our point of view

- The paper was very complicated
-
- Concepts from high-dimensional statistics we haven't seen before • Logical Flow of arguments wasn't clear when reading at first

- Could motivate more why certain lemmas were introduced
- Online document with full proofs was very helpful

Questions?

