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System ldentification

 Energy Optimization: Efficient energy use in
buildings

 Adaptive Suspensions: Vehicles adjusting to road
conditions

* Financial Markets: Adapting to market fluctuations

* Instable Energy Grid, Car Crashes & Financial Loss
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Outline

* Introduction to System Identification
 Main Result of the Paper

* Proof Outline

* First Step of the Proof in Detall
 Extending the Results

 Discussion: impact of the paper

e Conclusion: our personal opinion

e Questions
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Introduction to System
ldentification



Intro to System Ildentification
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Intro to System Ildentification

Model: mg = kx
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Intro to System Ildentification

]
Model: mg = kx
L k White Box Approach: Understanding of
v dynamics of the system
m
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Intro to System Ildentification

Black Box Approach

| System_ with unknown
dynamics
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Intro to System Ildentification

Black Box Approach

| System_ with unknown
dynamics
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Intro to System Ildentification

Black Box Approach

| System_ with unknown
dynamics
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Intro to System Ildentification

Black Box Approach

System with unknown
dynamics

 Use ML Technique to /

learn Model

>
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What is a linear time-series model?

Y =607X +V

Un livioum
Dynawmic Tlocess

. Dutputs
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What is a linear time-series model?

thZH*Xt—FV% t:1,2,...,T
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What is a linear time-series model?

Y = 0" X, +V;

Un livioum
Dynawmic Tlocess
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Autoregressive Exogenous Models

Y, _ZA*)Q_ZJFZB*Ut i+ W

71=1

Y, € RW .= System outputs at time ¢.
A7, B := Unkown ARX parameters
U, := User specified input at step 7.

W, := Noise term at time ¢t.
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ARX model as a linear system

ARX Model

Xt = :Y;ﬁ-ilzt—p Uizr—lzt—q: ) 0" = :Ai(:p qu , Vi = Wt

YtZH*Xt—FV% t:1,2,...,T




Main Result



Main Result

Theorem V.1 (ARX Finite-Sample Bound). Let
(Y1.7,Uo.7—1) be single trajectory input-output samples
generated by system (38) under Assumptions V.I, V.2
for some horizon 1. Fix a failure probability
0 < 6 < 1 and a time index T > max{p,q}. Let
Tye(0,7) = min{t : t > Ty(t,8/3,7)}, where Ty is defined
in (46). If T' > T,e(0, T), then with probability at least 1 — ¢

—~ . ()
R ((Z?dv + qdy) log

+logdet (X7X71)), (44)

where C is a universal constant, i.e., it is independent of
system, confidence 0 and index T.

Al for Science Seminar




Main Result

Quality of Approximation

0* := True System Parameters

A

0 := Estimated Parameters (LSE)

This term explains how close the
approximated parameters are to
the true parameters

107 — 0%l5p
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Main Result

Quality of Approximation

0* := True System Parameters

A

PREREQUISITES 0 := Estimated Parameters (LSE)

This term explains how close the
approximated parameters are to
the true parameters

——— |
R e ( l

—1
+ log det (ETZT )) : Main result: says how close the
approximation is to the real
system for some prerequisites
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Main Result - Prerequisites

ARX System Parameters
P, dq, dyv dU

p q
Yi =) AiYi i+ ) BiUi;+ W
=1

7=1

S v + qdy
o — 611, (pdy + gdy
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Main Result - Prerequisites

ARX System Parameters
P, dq, dyv dU

| Assumptions V.1, V2

System Assumptions

V.1 Non-explosive system
V.2 Noise is white noise

|07 — 0%, (pdy + qdu)
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Main Result - Prerequisites

ARX System Parameters
y in ] ) P, 4, dy,dy
Assumptions V.1, V.2
Fix a failure probability
0 < 0 < 1 and a time index ™ > maxi{p.q!.

System Assumptions

V.1 Non-explosive system
V.2 Noise is white noise

then with probability at least 1 — 0 Approximation Quality
dv + ad Probability that bound holds
~ 2 pay + qay directly affects the size of the
|07 — 6%, (pdy + gdy) log = 7 bound

it is independent of
system, confidence 0 and index T.
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Main Result - Prerequisites

ARX System Parameters
y inj ] ) P, q, dy, dy
Assumptions V.1, V.2
Fix a failure probability
0 < o < 1 and a time index T > max{p,q}. Let

System Assumptions

V.1 Non-explosive system
V.2 Noise is white noise

Approximation Quality

Probabillity that bound holds
directly affects the size of the
bound

Required Iterations

For given parameters,

| it is independent of computes after how many time
system, confidence o and index T. step the bound holds
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Main Result - Prerequisites

| Assumptions V.1, V2
Fix a failure probability
0 < 6 < 1 and a time index T > max{p,q}. Let

Tye(0,7) = min{t : t > Ty(t,8/3,7)}, where Ty is defined
in (46). If T' > T,e(0, T), then with probability at least 1 — ¢

. C pdy + qdy
_O*lI? <
|07 — 07|5p < SNR.T ((Pdv + gdy) log ——

where C is a universal constant, i.e., it is independent of
system, confidence 0 and index T.
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Signal to Noise Ratio

High SNR means good data
with small noise




Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let Signal to Noise Ratio

(Y1.7,Uo.7—1) be single trajectory input-output samples High SNR means good data

with small noise

generated by system (38) under Assumptions V.I, V.2
for some horizon 1. Fix a failure probability
0 < < 1 and a time index ™ > maxip,qr. Let
Tye(0,7) = min{t : t > Ty(t,8/3,7)}, where Ty is defined
in (46). If T' > T,e(0, T), then with probability at least 1 — ¢

Input-Output Samples

~ . ()
R ((Z?dv + qdy) log

where C is a universal constant, i.e., it is independent of
system, confidence 0 and index T.
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Main Result - Prerequisites

Theorem V.1 (ARX Finite-Sample Bound). Let Signal to Noise Ratio
(Y1.7,Uo.7—1) be single trajectory input-output samples High SNR means good data
generated by system (38) under Assumptions V.I, V.2 with small noise

for some horizon 1. Fix a failure probability

. . Input-Output Samples
0 < 6 < 1 and a time index T > max{p,q}. Let

Tye(0,7) = min{t : t > Ty(t,8/3,7)}, where Ty is defined Noise Covariance Matrices
. . - B additional constraint
in (46). If T' > T,e(0, T), then with probability at least 1 — ¢ determined by noise in the

system
pdy + qdy 4

—~ . ()
R ((m + qdy) log

+logdet (X7271))},  (44)

where C is a universal constant, i.e., it is independent of
system, confidence 0 and index T.

Al for Science Seminar




Main Result

Theorem V.1 (ARX Finite-Sample Bound). Let
(Y1.7,Uo.7—1) be single trajectory input-output samples
generated by system (38) under Assumptions V.I, V.2 o
for some horizon 1. Fix a failure probability
0 < 6 < 1 and a time index T > max{p,q}. Let
Tye(0,7) = min{t : t > Ty(t,8/3,7)}, where Ty is defined
in (46). If T' > T,e(0, T), then with probability at least 1 — ¢

—~ . ()
R ((Pdv + qdy) log

+logdet (X7X71)), (44)

where C is a universal constant, i.e., it is independent of
system, confidence 0 and index T.
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How can we prove this?



Proof Outline

1. ARX Model as Linear System

Y, = 6°X, + V,
|

0" = [Ajlkrp Biq]

Xt — [Yt-l;lzt—p U;r—lzt—Q]T
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Proof Outline

1. ARX Model as Linear System

2. Fix size of system () and
9 - argmm — E ||th 0.X + ||2 define the Least Squares
0cM Estimator M ¢ Rdyxd=x
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Proof Outline

1. ARX Model as Linear System

2. Fix size of system § and
9 - argmm — E |IY; (9Xt ||2 define the Least Squares
OcM Estimator M e Révxdx

3. Compute the (existing) closed
form solution

1 1
X[ XX/
t=1 t=1
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Proof Outline

1. ARX Model as Linear System

2. Fix size of system § and
define the Least Squares
Estimator M ¢ Réyxdz

) — 6*

3. Compute the (existing) closed

T T —1/27 T —1/2 form solution
— (Z V;XJ) (Z XtX;r> (Z X, XtT) 4. Find an expression for the
t=1

1 precision of the estimation
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Proof Outline

) — 6*

1. ARX Model as Linear System

2. Fix size of system § and
define the Least Squares
Estimator M ¢ Réyxdz

3. Compute the (existing) closed
form solution

4. Find an expression for the
precision of the estimation
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Proof Outline

1. ARX Model as Linear System

2. Fix size of system § and
define the Least Squares
Estimator M ¢ Réyxdz

6 — 0~ 3. Compute the (existing) closed
form solution

- - ~1/27 , 7 ~1/2
— (Z V;XJ) (Z XtXJ) (Z XtXtT) 4. Find an expression for the
t=1

1 precision of the estimation

5. Analyse the expression to
find a bound on the estimation
quality
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Proof Outline

1. ARX Model as Linear System

2. Fix size of system § and
define the Least Squares

/ This is a Matrix!
Estimator A ¢ Rdyxdx

|

3. Compute the (existing) closed
form solution

4. Find an expression for the
precision of the estimation

5. Analyse the expression to find

a bound on the estimation quality
Time-Scale Invariant

The trick is to analyse left &
right term separately!
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Structure of the Paper

Section I: Introduction to topic
Section Il: Math Prerequisites
Section lll: Analyse

Section IV: Analyse left term
Section V: Full proof

Section VI - VII: Extending results

Time-Scale Invariant
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First Step of Proof in Detall



Proof in Detall

A lot of Prerequisites

\4

Theorem V.1: After certain amount
of steps, the approximation is
smaller than the given bound with
given probabillity

Prove the theorem
under the given
assumptions
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Proof in Detall

A lot of Prerequisites
These Prerequisites aren’t arbitrary

|' """"""""""""""""" but very important to be able to
prove the Theorem!

Theorem V.1: After certain amount
of steps, the approximation is
smaller than the given bound with L]

given probability How should we choose those
prerequisites?

/v
Prove the theg)rem This is the first part of the proof!
under the given

assumptions
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Proof in Detall

How the measured data generated by the system looks, is very important

T data doesn’t capture all lower bound
ot enough excitation g possible system behaviour g the excitation
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Proof in Detall

How the measured data generated by the system looks, is very important
T data doesn’t capture all lower bound
ot enough excitation g possible system behaviour g the excitation
, | overfitting to . upper bound
high noise levels the noise
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Proof in Detall

How the measured data generated by the system looks, is very important
T data doesn’t capture all lower bound
ot enough excitation g possible system behaviour g the excitation
, | overfitting to . upper bound
high noise levels the noise
numerical ensure non-
> | instability " | explosivity
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Proof in Detall

The constraints can now be defined mathematically

T — i)
the excitation 16

upper bound A S pdy + qdy
) —— oo syt

T
ensure non- ~ \ —1/2
—e T
explosivity " &= { Z Wi X, (Z + T ZT)
t=1

det (Z + T f]T)

< 4K?1
— o6 ( det(X)
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Proof in Detall

The constraints can now be defined mathematically

lower bound | ———0M8m ——, 81
the excitation

upper bound
the noise

& P& NENE] >1—6

»
do with this ?
ensure non- ‘
—_— 53

explosivity
This is proven by combining
various lemmas from the paper

\4
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Proof in Detall

This bound also holds with
probability at least 1 — §

“with probability at least 1 — 0

pdy + qdy }/
0
+logdet (X7X-1)), (44)

—~ . ()
R ((m + qdy) log
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Proof in Detall

We can show that if the union of the three events holds, the main result holds

Show that if the three

> 1 » | events hold, the main
A result holds, by using

A previous results pga

This is proven by combining
various lemmas from the paper
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Extending the Result

 Theorem be extended to state space models 2

s D e Macroeconomic
Modeling

u —1 | B —»@—» [ 11 C 4@—”’  Control Systems

 Climate Modeling
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Extending the Result

 Theorem be extended to state space models
 Paper also derives result for less constraints on matrix 6

* Presents ideas for extending results to non-linear systems
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Discussion

* Big contribution to machine learning for control theory
* The proven bound on the approximation ratio is nearly optimal
 The constraints are realistic

* Therefore the LSE based approach for linear system identification can be
used and it’s performance is nhow well understood

 However it still remains open how good LSE is for non-linear systems

 Most systems are non-linear
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Conclusion - our point of view

 [he paper was very complicated
* Concepts from high-dimensional statistics we haven’t seen before

* |Logical Flow of arguments wasn’t clear when reading at first

* Could motivate more why certain lemmas were introduced

* Online document with full proofs was very helpful
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Questions?



