## Understanding and Mitigating Gradient Pathologies in Physics-Informed Neural Networks

S. Wang, Y. Teng, and P. Perdikaris

Yifei Han, Jonathan Seele - June 01, 2024

## **Table of Content**

- 1. Motivation
- 2. Related Work
- 3. Architecture and formal definition of the baseline PINN
- 4. Mode of failure: Gradient Pathologies
- 5. Contributed Solutions/Improvements
  - a. Learning rate annealing algorithm
  - b. Novel neural network architecture
- 6. Performance of the improvements
- 7. Summary, Outlook, Discussion

## Motivation

- PINNs deliver reasonable results
- But in some settings they perform poorly





Burger's equation: predicted solution u(t, x) with error  $L_2: 6.7 * 10^{-4}$ 

#### 0.750.500.250.00-0.25-0.50-0.75



#### Motivation **Example - Helmholtz Equation**

- Helmholtz Equation
- Conventional PINN delivers poor results



PINN model with 40 layers, 50 neurons per layer, after 40,000 iterations. Relative  $L_2$  error: 0.181

## **Table of Content**

- 1. Motivation
- 2. Related Work
- 3. Architecture and formal definition of the baseline PINN
- 4. Mode of failure: Gradient Pathologies
- 5. Contributed Solutions/Improvements
  - a. Learning rate annealing algorithm
  - b. Novel neural network architecture
- 6. Performance of the improvements
- 7. Summary, Outlook, Discussion

## **Related Work**

- Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, 2019.
- Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. *The Journal of Machine Learning Research*, 19(1):932–955, 2018.
- Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based on physics- constrained deep learning without simulation data. *arXiv preprint arXiv:1906.02382*, 2019.

## **Table of Content**

- 1. Motivation
- 2. Related Work
- 3. Architecture and formal definition of the baseline PINN
- 4. Mode of failure: Gradient Pathologies
- 5. Contributed Solutions/Improvements
  - a. Learning rate annealing algorithm
  - b. Novel neural network architecture
- 6. Performance of the improvements
- 7. Summary, Outlook, Discussion

## **Architecture PINN**

- Fully Cc
- 4 hidder
- 40,000 gradient



Architecture of a regular PINN

# **Primer in physics-informed neural networks**

- PINNs aim at inferring function  $\boldsymbol{u}(\boldsymbol{x},t)$
- Solution to system of nonlinear partial differential equations:

1. 
$$\boldsymbol{u}_t + \mathcal{N}_{\boldsymbol{x}}[\boldsymbol{u}] = 0, \ \boldsymbol{x} \in \Omega, t \in [0, t]$$

- 2. Initial condition:  $u(x,0) = h(x), x \in \Omega$
- 3. Boundary condition:  $u(x,t) = g(x,t), t \in [0,T], x \in \partial \Omega$
- No initial/boundary conditions  $\rightarrow$  infinite solutions

[,T]



## Primer in physics-informed neural networks

- Composite loss function:  $\mathcal{L}(\theta) := \mathcal{L}_r$
- Loss function of residual:  $\mathcal{L}_r = \frac{1}{N_r} \sum_{i=1}^{r}$
- $\mathcal{L}_i$  loss function of data fit terms
  - e.g., boundary loss

• 
$$\mathcal{L}_{u_b} = \frac{1}{N_b} \sum_{i=1}^{N_b} [u(x_b^i, t_b^i) - g_b^i]^2$$

$$egin{aligned} &( heta)+\sum_{i=1}^M\lambda_i\mathcal{L}_i( heta)\ &\sum_{k=1}^{N_r}[m{r}(m{x}_r^i,t_r^i)]^2\ &\mathbf{r}_{ heta}(m{x},t):=rac{\partial}{\partial t}f_{ heta}(m{x},t)+\mathcal{N}_{m{x}}[f_{ heta}(m{x},t)]^2 \end{aligned}$$

t)]

## **Table of Content**

- 1. Motivation
- 2. Related Work
- 3. Architecture and formal definition of the baseline PINN
- 4. Mode of failure: Gradient Pathologies
- 5. Contributed Solutions/Improvements
  - a. Learning rate annealing algorithm
  - b. Novel neural network architecture
- 6. Performance of the improvements
- 7. Summary, Outlook, Discussion

### **Gradient Pathologies Using Helmholtz Equation**

- Revisit the Helmholtz Equation in 2D
- Remember: PINNs struggle constructing accurate solution
- Now:
  - Fabricated solution causing erroneous prediction
  - Inspect the gradients of loss terms



#### **Gradient Pathologies Fabricated Solution**

- $\Delta u(x,y) + k^2 u(x,y) = q(x,y), (x,y) \in \Omega := (-1,1)$
- $u(x,y) = h(x,y), \ (x,y) \in \partial \Omega$
- Simple exact solution:  $u(x, y) = \sin(a_1 \pi x) \sin(a_2 \pi y)$
- Lets choose  $a_1 = 1$  and  $a_2 = 4$ .



### **Gradient Pathologies Inspecting gradients**

- Revisit the prediction of the PINN
- Fails especially at the boundary



PINN model with 40 layers, 50 neurons per layer, after 40,000 iterations. Relative  $L^2$  error: 0.181



### **Gradient Pathologies Inspecting gradients**

- Imbalanced gradients Boundary Condition is not enforced
- PDE has multiple solutions  $\rightarrow$  Network finds some (wrong) solution.
- Conclusion: model is biased towards minimizing residual loss  $\mathcal{L}_r(\theta)$





Histograms of back-propagated gradients at each layer, during the 40,000th iteration

## **Gradient Pathologies**





16

## The big picture





### **Gradient Analysis** What is causing the gradient imbalance?

- 1D Poisson Equation
  - $\Delta u(x) = g(x), \ x \in [0,1]$ • u(x) = h(x), x = 0 and x = 1
- Exact solution:  $u(x) = \sin(Cx)$
- Use PINN  $f_{\theta}(x)$  approximate u(x)

18

### **Gradient Analysis** What is causing the gradient imbalance ?

- We can show that:
  - $\|\nabla_{\theta} \mathcal{L}_{u_b}(\theta)\|_{L^{\infty}} \leq 2\epsilon \cdot \|\nabla_{\theta} \epsilon_{\theta}(x)\|_{L^{\infty}}$ •  $\|\nabla_{\theta} \mathcal{L}_r(\theta)\|_{L^{\infty}} \leq O(C^4) \cdot \epsilon \cdot \|\nabla_{\theta} \epsilon_{\theta}(x)\|_{L^{\infty}}$
- Large C  $\Rightarrow \|\nabla_{\theta} \mathcal{L}_r(\theta)\|_{L^{\infty}} > \|\nabla_{\theta} \mathcal{L}_{u_b}(\theta)\|_{L^{\infty}}$ 
  - Results in presented pathologies



## **Gradient Analysis**

What is causing the gradient imbalance?

Increasing imbalance with lacksquareincreasing C



Histograms of back-propagated gradients per layer, during 40,000th iteration

### **Stiffness in gradient flow dynamics** Root cause of gradient imbalance

- Gradient imbalance for large C values
- Why is this happening, what is the root cause ?
- Hypotheses:
  - 1. Stiffness exist in gradient flow dynamics of PINNs
  - 2. Stiffness comes along with imbalanced gradients

### Stiffness in gradient flow dynamics What is stiffness (in gradient flow)?

- Large disparity between eigenvalues, characterized by largest  $\bullet$ eigenvalue  $\sigma_{\max}(\nabla^2_{\mathbf{A}}\mathcal{L}(\theta))$
- direction

Intuitively corresponds to the curvature of the loss function along specific

### **Stiffness in gradient flow dynamics** Stiffness Example

**Stiff Gradient Flow** 



Non Stiff Gradient Flow



### Stiffness in gradient flow dynamics **Example Helmholtz Equation**

- Simple exact solution:  $u(x,y) = \sin(a_1\pi x)\sin(a_2\pi y)$
- Increasing target complexity increases stiffness



Largest Eigenvalues for the Hessian  $\nabla^2_{\theta} L(\theta)$  during training for different parameters.

## The big picture

**Higher complexity** 



Stiffness





### **Stiffness in gradient flow dynamics Stiffness consequences**

- The consequences of high stiffness
- 1. Small learning rate and slow convergence
  - Conditional stability requires  $\eta < 2/\sigma_{\max}(\nabla_{\theta}^2 \mathcal{L}(\theta))$
- 2. Otherwise gradient descent might fail to decrease loss
  - even if decent direction is correct

Proof(2) in Appendix

### **Stiffness in gradient flow dynamics** Stiffness Example

**Stiff Gradient Flow** 



Non Stiff Gradient Flow



## The big picture

**Higher complexity** 



Stiffness







## **Table of Content**

- 1. Motivation
- 2. Related Work
- 3. Architecture and formal definition of the baseline PINN
- 4. Mode of failure: Gradient Pathologies
- 5. Contributed Solutions/Improvements
  - a. Learning rate annealing algorithm
  - b. Novel neural network architecture
- 6. Performance of the improvements
- 7. Summary, Outlook, Discussion

## Contributions

• M1: Basic Architecture

• M2: Basic Architecture + Algorithm

• M3: New Architecture

• M4: New Architecture + Algorithm

#### **Balance Gradients Inspiration - Adam Optimizer**

Momentum: Use gradient from steps before

-> smooth gradient

-> overcome saddle-points

• **RMSProp:** Scale LR based on magnitude of previous gradients

-> fast in flat areas / slow in steep areas

(RMSProp = Root Mean Square Propagation)

we denote  $\beta_1$  and  $\beta_2$  to the power t.

**Require:**  $\alpha$ : Stepsize **Require:**  $\beta_1, \beta_2 \in [0, 1)$ : Exponential decay rates for the moment estimates **Require:**  $f(\theta)$ : Stochastic objective function with parameters  $\theta$ **Require:**  $\theta_0$ : Initial parameter vector  $m_0 \leftarrow 0$  (Initialize 1<sup>st</sup> moment vector)  $v_0 \leftarrow 0$  (Initialize 2<sup>nd</sup> moment vector)  $t \leftarrow 0$  (Initialize timestep) while  $\theta_t$  not converged do  $t \leftarrow t + 1$  $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$  (Get gradients w.r.t. stochastic objective at timestep t)  $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$  (Update biased first moment estimate)  $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$  (Update biased second raw moment estimate)  $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$  (Compute bias-corrected first moment estimate)  $\hat{v}_t \leftarrow v_t/(1 - \beta_2^t)$  (Compute bias-corrected second raw moment estimate)  $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$  (Update parameters) end while **return**  $\theta_t$  (Resulting parameters)

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation.  $g_t^2$  indicates the elementwise square  $g_t \odot g_t$ . Good default settings for the tested machine learning problems are  $\alpha = 0.001$ ,  $\beta_1 = 0.9, \beta_2 = 0.999$  and  $\epsilon = 10^{-8}$ . All operations on vectors are element-wise. With  $\beta_1^t$  and  $\beta_2^t$ 

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation.  $g_t^2$  indicates the elementwise square  $g_t \odot g_t$ . Good default settings for the tested machine learning problems are  $\alpha = 0.001$ ,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$  and  $\epsilon = 10^{-8}$ . All operations on vectors are element-wise. With  $\beta_1^t$  and  $\beta_2^t$  we denote  $\beta_1$  and  $\beta_2$  to the power t.

**Require:**  $\alpha$ : Stepsize **Require:**  $\beta_1, \beta_2 \in [0, 1)$ : Exponential decay rates for the moment estimates **Require:**  $f(\theta)$ : Stochastic objective function with parameters  $\theta$  **Require:**  $\theta_0$ : Initial parameter vector  $m_0 \leftarrow 0$  (Initialize 1<sup>st</sup> moment vector)  $v_0 \leftarrow 0$  (Initialize 2<sup>nd</sup> moment vector)  $t \leftarrow 0$  (Initialize timestep) while  $\theta_t$  not converged **do** 

 $t \leftarrow t + 1$ 

 $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) \text{ (Get gradients w.r.t. stochastic objective at timestep t)} \\ m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t \text{ (Update biased first moment estimate)} \\ v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \text{ (Update biased second raw moment estimate)} \\ m_t \leftarrow m_t/(1 - \beta_1) \text{ (Compute bias-corrected first moment estimate)} \\ v_t \leftarrow v_t/(1 - \beta_2) \text{ (Compute bias-corrected second raw moment estimate)} \\ \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{v_t} + \epsilon) \text{ (Update parameters)} \\ \text{end while} \\ \text{return } \theta_t \text{ (Resulting parameters)} \end{aligned}$ 

## **Balance Losses**

#### Without $\lambda$

Loss function:  $\mathcal{L}(\theta) := \mathcal{L}_r(\theta) + \sum_{i=1}^{M} \mathcal{L}_i(\theta)$ 

$$\begin{aligned} \underline{\mathsf{GD} \text{ update:}} \\ \theta_{n+1} &= \theta_n - \eta \nabla_{\theta} \mathcal{L}(\theta_n) \\ &= \theta_n - \eta [\nabla_{\theta} \mathcal{L}_r(\theta_n) + \sum_{i=1}^M \nabla_{\theta} \mathcal{L}_i(\theta_n)] \end{aligned}$$

#### With $\lambda$ Loss function: $\mathcal{L}(\theta) := \mathcal{L}_r(\theta) + \sum_{i=1}^M \lambda_i \mathcal{L}_i(\theta)$

$$\begin{aligned} \underline{\mathsf{GD} \text{ update:}} \\ \theta_{n+1} &= \theta_n - \eta \nabla_{\theta} \mathcal{L}(\theta_n) \\ &= \theta_n - \eta \nabla_{\theta} \mathcal{L}_r(\theta_n) - \eta \sum_{i=1}^M \lambda_i \nabla_{\theta} \mathcal{L}_i(\theta_n) \end{aligned}$$

#### Balance Losses Idea

$$\frac{1}{d} \sum_{j=1}^{d} \left| \frac{\partial \mathcal{L}_{i}}{\partial \theta_{j}} \right| = \lambda_{i} \overline{\left| \nabla_{\theta} \mathcal{L}_{i}(\theta) \right|} = \max_{\theta_{n}} \left\{ \left| \nabla_{\theta} \mathcal{L}_{r}(\theta_{n}) \right| \right\} = \max \left\{ \left| \frac{\partial \mathcal{L}_{r}}{\partial \theta_{1}} \right|, \left| \frac{\partial \mathcal{L}_{r}}{\partial \theta_{2}} \right|, \dots, \left| \frac{\partial \mathcal{L}_{r}}{\partial \theta_{2}} \right| \right\}$$

Avg component of gradient of  $\mathcal{L}_i$ 

Max component of gradient of  $\mathcal{L}_r$ 



### Balance Losses Idea



 $\lambda_i = \frac{\max_{\theta_i} - \frac{1}{2}}{2}$ 

$$\left\{ \frac{\mathcal{L}_r}{\partial_1} \right|, \left| \frac{\partial \mathcal{L}_r}{\partial \theta_2} \right|, \dots, \left| \frac{\partial \mathcal{L}_r}{\partial \theta_d} \right| \right\}$$
 Max component of  $\mathcal{L}_r$ 

$$rac{1}{|
abla_{ heta}\mathcal{L}_{r}( heta_{n})|} }{\overline{|
abla_{ heta}\mathcal{L}_{i}( heta)|}}$$

$$= rac{1}{d} \sum_{j=1}^d \left| rac{\partial \mathcal{L}_i}{\partial heta_j} 
ight|$$

Avg component of gradient of  $\mathcal{L}_i$
$$\mathcal{L}( heta) := \mathcal{L}_r$$

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for n = 1, ..., S do

(a) Compute  $\hat{\lambda}_i$  by

$$\hat{\lambda}_{i} = \frac{\max_{\theta} \{ |\nabla_{\theta} \mathcal{L}_{r}(\theta_{n})| \}}{|\nabla_{\theta} \mathcal{L}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)

where  $\overline{|\nabla_{\theta} \mathcal{L}_i(\theta_n)|}$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

 $\lambda_i = (1 - \alpha)$ 

(c) Update the parameters  $\theta$  via gradient descent

$$\theta_{n+1} = \theta_n - \eta \nabla_\theta \mathcal{L}_r(\theta_n) - \eta \sum_{i=1}^M \lambda_i \nabla_\theta \mathcal{L}_i(\theta_n)$$
(42)

end

The recommended hyper-parameter values are:  $\eta = 10^{\circ}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\lambda_i + \alpha \hat{\lambda}_i, \ i = 1, \dots, M.$$
 (41)

$$^{-3}$$
 and  $\alpha = 0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\theta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for n = 1, ..., S do (a) Compute  $\hat{\lambda}_i$  by

 $\hat{\lambda}_i = rac{\max_{ heta} \{ | 
abla_t \| \ \overline{|
abla_{ heta} \mathcal{L}_i} \}$ 

where  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

(c) Update the parameters  $\theta$  via gradient descent

The recommended hyper-parameter values are:  $\eta = 10^{-10}$ 

$$_{r}( heta)+\sum_{i=1}^{M} oldsymbol{\lambda_{i}} \mathcal{L}_{i}( heta),$$

$$\frac{\mathcal{I}_{\theta}\mathcal{L}_{r}(\theta_{n})|}{\mathcal{I}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)

$$\lambda_i + \alpha \hat{\lambda}_i, \quad i = 1, \dots, M.$$
(41)

$$\mathcal{L}_{\theta}\mathcal{L}_{r}(\theta_{n}) - \eta \sum_{i=1}^{M} \lambda_{i} \nabla_{\theta} \mathcal{L}_{i}(\theta_{n})$$
 (42)

$$^{-3}$$
 and  $\alpha = 0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\eta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for n = 1, ..., S do (a) Compute  $\hat{\lambda}_i$  by

$$\hat{\lambda}_{i} = \frac{\max_{\theta} \{ |\nabla_{\theta} \mathcal{L}_{r}(\theta_{n})| \}}{|\nabla_{\theta} \mathcal{L}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)

where  $\overline{|\nabla_{\theta} \mathcal{L}_i(\theta_n)|}$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

 $\lambda_i = (1 - \alpha)$ 

(c) Update the parameters  $\theta$  via gradient descent

$$\theta_{n+1} = \theta_n - \eta \nabla_\theta \mathcal{L}_r(\theta_n) - \eta \sum_{i=1}^M \lambda_i \nabla_\theta \mathcal{L}_i(\theta_n)$$
(42)

end

The recommended hyper-parameter values are:  $\eta = 10^{\circ}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\lambda_i + \alpha \hat{\lambda}_i, \ i = 1, \dots, M.$$
 (41)

$$^{-3}$$
 and  $\alpha = 0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\eta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for  $n = 1, \ldots, S$  do

(a) Compute  $\hat{\lambda}_i$  by



where  $\overline{|\nabla_{\theta} \mathcal{L}_i(\theta_n)|}$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

(c) Update the parameters  $\theta$  via gradient descent

The recommended hyper-parameter values are:  $\eta = 10^{-10}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\frac{7_{\theta}\mathcal{L}_{r}(\theta_{n})|}{\overline{\mathcal{L}_{i}(\theta_{n})|}}, \quad i = 1, \dots, M,$$

$$(40)$$

$$\lambda_i + \alpha \hat{\lambda}_i, \quad i = 1, \dots, M.$$
(41)

$${}_{\theta}\mathcal{L}_{r}(\theta_{n}) - \eta \sum_{i=1}^{M} \lambda_{i} \nabla_{\theta} \mathcal{L}_{i}(\theta_{n})$$
(42)

$$^{-3}$$
 and  $\alpha = 0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\eta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for  $n = 1, \ldots, S$  do

(a) Compute  $\hat{\lambda}_i$  by



where  $\overline{|\nabla_{\theta} \mathcal{L}_i(\theta_n)|}$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

(c) Update the parameters  $\theta$  via gradient descent

The recommended hyper-parameter values are:  $\eta = 10^{-10}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\frac{\mathcal{I}_{\theta}\mathcal{L}_{r}(\theta_{n})|}{\mathcal{I}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$

$$(40)$$

$$\lambda_i + \alpha \hat{\lambda}_i, \quad i = 1, \dots, M.$$
(41)

$${}_{\theta}\mathcal{L}_{r}(\theta_{n}) - \eta \sum_{i=1}^{M} \lambda_{i} \nabla_{\theta} \mathcal{L}_{i}(\theta_{n})$$
(42)

$$^{-3}$$
 and  $\alpha = 0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\eta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for  $n = 1, \ldots, S$  do

(a) Compute  $\hat{\lambda}_i$  by



where  $\overline{|\nabla_{\theta} \mathcal{L}_i(\theta_n)|}$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$ (b) Update the weights  $\lambda_i$  using a moving average

(c) Update the parameters  $\theta$  via gradient descent

The recommended hyper-parameter values are:  $\eta = 10^{-10}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\frac{\nabla_{\theta} \mathcal{L}_{r}(\theta_{n})|}{|\mathcal{L}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)  
(40)  
(40)  
(40)  
(41)  
(41)  

$$\frac{\nabla_{\theta} \mathcal{L}_{r}(\theta_{n}) - \eta \sum_{i=1}^{M} \lambda_{i} \nabla_{\theta} \mathcal{L}_{i}(\theta_{n})$$
(42)

$$^{-3}$$
 and  $\alpha = 0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\eta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for n = 1, ..., S do (a) Compute  $\hat{\lambda}_i$  by

 $\hat{\lambda}_i = rac{\max_{ heta} \{ | 
abla_{ heta} \}}{\overline{|
abla_{ heta} \mathcal{L}_i}}$ 

where  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

 $\lambda_i = (1 - \alpha)$ 

(c) Update the parameters  $\theta$  via gradient descent

The recommended hyper-parameter values are:  $\eta = 10^{-10}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\frac{\mathcal{I}_{\theta}\mathcal{L}_{r}(\theta_{n})|}{\mathcal{I}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)

$$\lambda_i + \alpha \hat{\lambda}_i, \ i = 1, \dots, M.$$
 (41)

$${}_{\theta}\mathcal{L}_{r}(\theta_{n}) - \eta \sum_{i=1}^{M} \lambda_{i} \nabla_{\theta} \mathcal{L}_{i}(\theta_{n})$$
(42)

$$^{-3}$$
 and  $lpha=0.9$ .

 $\mathcal{L}(\theta) := \mathcal{L}_{\eta}$ 

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for n = 1, ..., S do (a) Compute  $\hat{\lambda}_i$  by



where  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

 $\lambda_i = (1 - \alpha)$ 

(c) Update the parameters  $\theta$  via gradient descent

 $\theta_{n+1} = \theta_n - \eta \nabla$ 

The recommended hyper-parameter values are:  $\eta = 10^{-3}$  and  $\alpha = 0.9$ .

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\frac{\mathcal{I}_{\theta}\mathcal{L}_{r}(\theta_{n})|}{\mathcal{I}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)

$$\lambda_i + \alpha \hat{\lambda}_i, \quad i = 1, \dots, M.$$
(41)

$$\mathcal{I}_{\theta}\mathcal{L}_{r}(\theta_{n}) - \eta \sum_{i=1}^{M} \lambda_{i} \nabla_{\theta} \mathcal{L}_{i}(\theta_{n})$$
 (42)

$$\mathcal{L}( heta) := \mathcal{L}_r$$

different loss terms. Then use S steps of a gradient descent algorithm to update the parameters  $\theta$  as: for n = 1, ..., S do

(a) Compute  $\hat{\lambda}_i$  by

$$\hat{\lambda}_{i} = \frac{\max_{\theta} \{ |\nabla_{\theta} \mathcal{L}_{r}(\theta_{n})| \}}{|\nabla_{\theta} \mathcal{L}_{i}(\theta_{n})|}, \quad i = 1, \dots, M,$$
(40)

where  $\overline{|\nabla_{\theta} \mathcal{L}_i(\theta_n)|}$  denotes the mean of  $|\nabla_{\theta} \mathcal{L}_i(\theta_n)|$  with respect to parameters  $\theta$ . (b) Update the weights  $\lambda_i$  using a moving average of the form

 $\lambda_i = (1 - \alpha)$ 

(c) Update the parameters  $\theta$  via gradient descent

$$\theta_{n+1} = \theta_n - \eta \nabla_\theta \mathcal{L}_r(\theta_n) - \eta \sum_{i=1}^M \lambda_i \nabla_\theta \mathcal{L}_i(\theta_n)$$
(42)

end

The recommended hyper-parameter values are:  $\eta = 10^{\circ}$ 

$$_{r}( heta)+\sum_{i=1}^{M}\lambda_{i}\mathcal{L}_{i}( heta),$$

$$\lambda_i + \alpha \hat{\lambda}_i, \ i = 1, \dots, M.$$
 (41)

$$^{-3}$$
 and  $\alpha = 0.9$ .

## **Results: M1 vs M2** Helmholtz





### **M1**: $\nabla_{\theta} \mathcal{L}_{u_b}(\theta)$ spikes at 0 Imbalanced



### M2:

 $\nabla_{\theta} \mathcal{L}_{u_b}(\theta)$  more spread out

More balanced

## **Results: M1 vs M2** Helmholtz



### 10x less error than M1



• Fully Connected NN: as in M1



- Fully Connected NN: as in M1
- Encoders: Transforms input into high-dimensional embedding

$$X \xrightarrow{W_1, b_1} U$$

$$X \xrightarrow{W^{z,1}, b^{z,1}} H^{(1)} \xrightarrow{W^{z,2}, b^{z,2}} H^{(2)} W$$

$$X \xrightarrow{W_2, b_2} V$$



$$X \xrightarrow{W_1, b_1} U$$

$$X \xrightarrow{W^{z,1}, b^{z,1}} H^{(1)} \xrightarrow{W^{z,2}, b^{z,2}} H^{(2)}$$

$$X \xrightarrow{W_2, b_2} V$$

$$\begin{split} &U = \phi(XW^1 + b^1), \quad V = \phi(XW^2 + b^2), \\ &H^{(1)} = \phi(XW^{z,1} + b^{z,1}), \\ &Z^{(k)} = \phi(H^{(k)}W^{z,k} + b^{z,k}), \quad k = 1, \dots, L, \\ &H^{(k+1)} = (1 - Z^{(k)}) \odot U + Z^{(k)} \odot V, \quad k = 1, \dots, L, \\ &f_{\theta}(x) = H^{(L+1)}W + b, \end{split}$$



$$X \xrightarrow{W_{1}, b_{1}} U$$

$$X \xrightarrow{W^{z,1}, b^{z,1}, H^{(1)}} \xrightarrow{W^{z,2}, b^{z,2}, H^{(2)}} H^{(2)}$$

$$X \xrightarrow{W_{2}, b_{2}} V$$

$$U = \phi(XW^{1} + b^{1}), V$$

$$H^{(1)} = \phi(XW^{z,1} + b^{z,2}, V)$$

$$Z^{(k)} = \phi(H^{(k)}W^{z,k} + H^{(k+1)}) = (1 - Z^{(k)}) \odot$$

 $f_{\theta}(x) = H^{(L+1)}W + b,$ 



$$X \xrightarrow{W_1, b_1} U$$

$$X \xrightarrow{W^{z,1}, b^{z,1}} H^{(1)} \xrightarrow{W^{z,2}, b^{z,2}} H^{(2)}$$

$$X \xrightarrow{W_2, b_2} V$$

$$U = \phi(XW^1 + b^1), V$$

$$H^{(1)} = \phi(XW^{z,1} + b^z)$$

$$Z^{(k)} = \phi(H^{(k)}W^{z,k} + b^z)$$

$$H^{(k+1)} = (1 - Z^{(k)}) \odot$$

$$f_{\theta}(x) = H^{(L+1)}W + b$$



 Multiplicative Interactions: accounts for multiplicative relations among different input dimensions

$$\begin{split} &U = \phi(XW^1 + b^1), \quad V = \phi(XW^2 + b^2), \\ &H^{(1)} = \phi(XW^{z,1} + b^{z,1}), \\ &Z^{(k)} = \phi(H^{(k)}W^{z,k} + b^{z,k}), \quad k = 1, \dots, L, \\ &H^{(k+1)} = (1 - Z^{(k)}) \odot U + Z^{(k)} \odot V, \quad k = 1, \dots, L, \\ &f_{\theta}(x) = H^{(L+1)}W + b, \end{split}$$

- Multiplicative Interactions: accounts for multiplicative relations among different input dimensions

$$U = \phi(XW^{1} + b^{1}), \quad V$$
$$H^{(1)} = \phi(XW^{z,1} + b^{z})$$
$$Z^{(k)} = \phi(H^{(k)}W^{z,k} + b^{2})$$
$$H^{(k+1)} = (1 - Z^{(k)})$$
$$I$$
$$f_{\theta}(x) = H^{(L+1)}W + b^{2}$$

 Residual Connections: enhances hidden states -> less vanishing gradient  $V = \phi(XW^2 + b^2),$  $^{,1}),$  $b^{z,k}), \ k = 1, \ldots, L,$  $D U + Z^{(k)} O V, \quad k = 1, \dots, L,$ 

## **Results: M1 vs M3** Helmholtz





## **Results: M2 vs M4** Helmholtz



- 3x less error than M2
- 30x less error than M1

![](_page_56_Figure_4.jpeg)

# **Table of Content**

- 1. Motivation
- 2. Related Work
- 3. Architecture and formal definition of the baseline PINN
- 4. Mode of failure: Gradient Pathologies
- 5. Contributed Solutions/Improvements
  - a. Learning rate annealing algorithm
  - b. Novel neural network architecture
- 6. Performance of the improvements
- 7. Summary, Outlook, Discussion

# The big picture

**Higher complexity** 

![](_page_58_Picture_2.jpeg)

Stiffness

![](_page_58_Figure_4.jpeg)

![](_page_58_Picture_5.jpeg)

![](_page_58_Picture_6.jpeg)

## Summary

- Loss terms of different nature cause imbalanced gradients
- Adaptive learning rates balance different terms in loss function
- Novel architectures can prevent gradient-related pathologies
- Loss is reduced by a factor of 50-100x across many problems.
- Developments generalizable to other tasks with multiple objective functions
- Still at very early stages of understanding the capabilities and limitations

## **Outlook** Open questions, Further Research needed

- Exact relation unknown: PDE stiffness <-> Gradient Flow stiffness
- Can gradient flow stiffness be reduced?
   (e.g. using domain decomposition techniques, different choices of loss functions, more effective neural architectures, etc.)
- If stiffness turns out to be an inherent property of PINNs, what else can we do to enhance the robustness of their training and the accuracy of their predictions?
- Can we devise more stable and effective optimization algorithms to train PINN models with stiff gradient flow dynamics?
- How does stiffness affect the approximation error and generalization error of PINNs?

## **Discussion** Our opinion:

- Understandability:
- Novelty:
- Replicability:
- Relevance:

![](_page_61_Figure_5.jpeg)

![](_page_62_Picture_1.jpeg)

Questions?

## **Bonus Slide: How to set up a PINN** Flow in a lid driven cavity

![](_page_64_Figure_1.jpeg)

(d) Model M4 (relative

![](_page_64_Figure_3.jpeg)

e 
$$L^2$$
 prediction error: 7.53e-01).

```
(d) Model M4 (relative L^2 prediction error: 3.42e-02).
```

*Proof.* Recall that the loss function is given by

$$\mathcal{L}(\theta) = \mathcal{L}_{r}(\theta) + \mathcal{L}_{u_{b}}(\theta)$$
  
=  $\frac{1}{N_{b}} \sum_{i=1}^{N_{b}} [f_{\theta}(x_{b}^{i}) - h(x_{b}^{i})]^{2} + \frac{1}{N_{r}} \sum_{i=1}^{N_{r}} [\frac{\partial^{2}}{\partial x^{2}} f_{\theta}(x_{r}^{i}) - g(x_{r}^{i})]^{2}.$  (75)

$$\begin{split} \frac{\partial \mathcal{L}_{u_b}(\theta)}{\partial \theta} \bigg| &= \left| \frac{\partial}{\partial \theta} \left( \frac{1}{2} \sum_{i=1}^2 \left( u_\theta \left( x_b^i \right) - h \left( x_b^i \right) \right)^2 \right) \right| \\ &= \left| \sum_{i=1}^2 \left( u_\theta \left( x_b^i \right) - h \left( x_b^i \right) \right) \frac{\partial u_\theta \left( x_b^i \right)}{\partial \theta} \right| \\ &= \left| \sum_{i=1}^2 \left( u \left( x_b^i \right) \cdot \epsilon_\theta \left( x_b^i \right) - u \left( x_b^i \right) \right) u \left( x_b^i \right) \frac{\partial \epsilon_\theta \left( x_b^i \right)}{\partial \theta} \right| \\ &= \left| \sum_{i=1}^2 u \left( x_b^i \right) \left( 1 - \epsilon_\theta \left( x_b^i \right) \right) u \left( x_b^i \right) \frac{\partial \epsilon_\theta \left( x_b^i \right)}{\partial \theta} \right| \\ &\leq \left\| \frac{\partial \epsilon_\theta(x)}{\partial \theta} \right\|_{L^{\infty}} \cdot 2\epsilon \end{split}$$

Here we fix  $\theta \in \Theta$ , where  $\Theta$  denote all weights in a neural network. Then by assumptions,  $\frac{\partial \mathcal{L}_{u_b}(\theta)}{\partial \theta}$  can be computed by

66

Next, we may rewrite the  $\mathcal{L}_r$  as

$$\begin{aligned} \mathcal{L}_{r} &= \frac{1}{N_{f}} \sum_{i=1}^{N_{f}} \left| \frac{\partial^{2} u_{\theta}}{\partial x^{2}} \left( x_{f}^{i} \right) - \frac{\partial^{2} u}{\partial x^{2}} \left( x_{f}^{i} \right) \right|^{2} \approx \int_{0}^{1} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right)^{2} dx \\ \text{by parts we have,} \\ &= \frac{\partial}{\partial \theta} \int_{0}^{1} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right)^{2} dx \\ &= \int_{0}^{1} \frac{\partial}{\partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right)^{2} dx \\ &= \int_{0}^{1} 2 \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \frac{\partial}{\partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} \right) dx \\ &= 2 \int_{0}^{1} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \frac{\partial^{2}}{\partial x^{2}} \frac{\partial (u_{\theta}(x))}{\partial \theta} \right) dx \\ &= 2 \left[ \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \right]_{0}^{1} - \int_{0}^{1} \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{3} u_{\theta}(x)}{\partial x^{3}} - \frac{\partial^{3} u(x)}{\partial x^{3}} \right) dx \\ &= 2 \left[ \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \right]_{0}^{1} - \int_{0}^{1} \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{3} u_{\theta}(x)}{\partial x^{3}} - \frac{\partial^{3} u(x)}{\partial x^{3}} \right) dx \\ &= 2 \left[ \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \right]_{0}^{1} - \frac{\partial u_{\theta}(x)}{\partial \theta} \left( \frac{\partial^{3} u_{\theta}(x)}{\partial x^{3}} - \frac{\partial^{3} u(x)}{\partial x^{3}} \right) \right]_{0}^{1} \end{aligned}$$

Then by integra

$$\begin{aligned} \mathcal{L}_{r} &= \frac{1}{N_{f}} \sum_{i=1}^{N_{f}} \left| \frac{\partial^{2} u_{\theta}}{\partial x^{2}} \left( x_{f}^{i} \right) - \frac{\partial^{2} u}{\partial x^{2}} \left( x_{f}^{i} \right) \right|^{2} \approx \int_{0}^{1} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right)^{2} dx \\ \text{gration by parts we have,} \\ \frac{\partial \mathcal{L}_{r}}{\partial \theta} &= \frac{\partial}{\partial \theta} \int_{0}^{1} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right)^{2} dx \\ &= \int_{0}^{1} \frac{\partial}{\partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right)^{2} dx \\ &= \int_{0}^{1} 2 \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \frac{\partial}{\partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} \right) dx \\ &= 2 \int_{0}^{1} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \frac{\partial^{2}}{\partial x^{2}} \frac{\partial (u_{\theta}(x))}{\partial \theta} \right) dx \\ &= 2 \left[ \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \right]_{0}^{1} - \int_{0}^{1} \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{3} u_{\theta}(x)}{\partial x^{3}} - \frac{\partial^{3} u(x)}{\partial x^{3}} \right) dx \\ &= 2 \left[ \frac{\partial^{2} u_{\theta}(x)}{\partial x \partial \theta} \left( \frac{\partial^{2} u_{\theta}(x)}{\partial x^{2}} - \frac{\partial^{2} u(x)}{\partial x^{2}} \right) \right]_{0}^{1} - \frac{\partial u_{\theta}(x)}{\partial \theta} \left( \frac{\partial^{3} u_{\theta}(x)}{\partial x^{3}} - \frac{\partial^{3} u(x)}{\partial x^{3}} \right) \right|_{0}^{1} \\ &+ \int_{0}^{1} \frac{\partial u_{\theta}(x)}{\partial \theta} \left( \frac{\partial^{4} u_{\theta}(x)}{\partial x^{4}} - \frac{\partial^{4} u(x)}{\partial x^{4}} \right) dx \right] \end{aligned}$$

67

Note that

$$\begin{aligned} \frac{\partial^2 u_{\theta}(x)}{\partial x \partial \theta} \bigg| &= \left| \frac{\partial^2 u(x) \epsilon_{\theta}(x)}{\partial x \partial \theta} \right| = \left| \frac{\partial}{\partial \theta} \left( u'(x) \epsilon_{\theta}(x) + u(x) \epsilon'_{\theta}(x) \right) \right| \\ &= \left| u'(x) \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} + u(x) \frac{\partial \epsilon'_{\theta}(x)}{\partial \theta} \right| \le C \left\| \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}} + \left\| \frac{\partial \epsilon'_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}} \end{aligned}$$

![](_page_68_Figure_1.jpeg)

$$\begin{aligned} \left| \frac{\partial^2 u(x)\epsilon_{\theta}(x)}{\partial x^2} - \frac{\partial^2 u(x)}{\partial x^2} \right| \\ \left| u''(x)\epsilon_{\theta}(x) + 2u(x)\epsilon''_{\theta}(x) - u''(x) \right| \\ \left| u''(x)\left(\epsilon_{\theta}(x) - 1\right) + 2u(x)\epsilon''_{\theta}(x) \right| \\ C^2\epsilon + 2\epsilon \end{aligned}$$

$$\leq 2 \left( C \left\| \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}} + \left\| \frac{\partial \epsilon_{\theta}'(x)}{\partial \theta} \right\|_{L^{\infty}} \right) \left( C^{2} \epsilon + 2\epsilon \right)$$

$$= O \left( C^{3} \right) \cdot \epsilon \cdot \left\| \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}}$$

$$(76)$$

$$\begin{vmatrix} 1 \\ 0 \end{vmatrix} = \left| \frac{\partial u_{\theta}(x)}{\partial \theta} \left( \frac{\partial^{3} u(x) \epsilon_{\theta}(x)}{\partial x^{3}} - \frac{\partial^{3} u(x)}{\partial x^{3}} \right) \right|_{0}^{1}$$

$$\leq O\left(C^{3}\right) \cdot \epsilon \cdot \left\| \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}}$$

$$(78)$$

69

Finally,

$$\left| \int_{0}^{1} \frac{\partial u_{\theta}(x)}{\partial \theta} \left( \frac{\partial^{4} u_{\theta}(x)}{\partial x^{4}} - \frac{\partial^{4} u(x)}{\partial x^{4}} \right) dx \right| \leq O\left(C^{4}\right) \cdot \epsilon \cdot \left\| \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}}$$

$$\left| \frac{\partial \mathcal{L}_{r}}{\partial \theta} \right| \leq O\left(C^{4}\right) \cdot \epsilon \cdot \left\| \frac{\partial \epsilon_{\theta}(x)}{\partial \theta} \right\|_{L^{\infty}}$$

$$(80)$$

Therefore, plugging all

### **Appendix for further detail** Proof(2) Gradient Descent Failure

The following simple analysis may reveal the connection between stiffness in the gradient flow dynamics and the evident difficulty in training physics-informed neural networks with gradient descent. Suppose that at n-th step of gradient decent during the training, we have

$$\theta_{n+1} = \theta_n - \eta \nabla_{\theta} \mathcal{L}(\theta_n) = \theta_n - \eta \left[ \nabla_{\theta} \mathcal{L}_r(\theta_n) + \nabla_{\theta} \mathcal{L}_{u_b}(\theta_n) \right]$$
(18)

where  $\eta$  is the learning rate. Then applying second order Taylor expansion to the loss function  $\mathcal{L}(\theta)$  at  $\theta_n$  gives

$$\mathcal{L}(\theta_{n+1}) = \mathcal{L}(\theta_n) + (\theta_{n+1} - \theta_n) \cdot \nabla_{\theta} \mathcal{L}(\theta_n) + \frac{1}{2} (\theta_{n+1} - \theta_n)^T \nabla_{\theta}^2 \mathcal{L}(\xi) (\theta_{n+1} - \theta_n)$$
(19)

where  $\xi = t\theta_n + (1-t)\theta_{n+1}$  for some  $t \in [0, 1]$  and  $\nabla^2_{\theta} \mathcal{L}(\xi)$  is the Hessian matrix of the loss function  $\mathcal{L}(\theta)$  evaluated at  $\xi$ . Now applying 18 to 19, we obtain

$$\mathcal{L}(\theta_{n+1}) - \mathcal{L}(\theta_n) = -\eta \nabla_{\theta} \mathcal{L}(\theta_n) \cdot \nabla_{\theta} \mathcal{L}(\theta_n) + \frac{1}{2} \eta^2 \nabla_{\theta} \mathcal{L}(\theta_n)^T \nabla_{\theta}^2 \mathcal{L}(\xi) \eta \nabla_{\theta} \mathcal{L}(\theta_n)$$
(20)  
$$= -\eta \|\nabla_{\theta} \mathcal{L}(\theta_n)\|_2^2 + \frac{1}{2} \eta^2 \nabla_{\theta} \mathcal{L}(\theta_n)^T \nabla_{\theta}^2 \mathcal{L}(\xi) \nabla_{\theta} \mathcal{L}(\theta_n)$$
(21)  
$$= -\eta \|\nabla_{\theta} \mathcal{L}(\theta_n)\|_2^2 + \frac{1}{2} \eta^2 \nabla_{\theta} \mathcal{L}(\theta_n)^T \left(\nabla_{\theta}^2 \mathcal{L}_r(\xi) + \nabla_{\theta}^2 \mathcal{L}_{u_b}(\xi)\right) \nabla_{\theta} \mathcal{L}(\theta_n)$$
(22)  
$$= -\eta \|\nabla_{\theta} \mathcal{L}(\theta_n)\|_2^2 + \frac{1}{2} \eta^2 \nabla_{\theta} \mathcal{L}(\theta_n)^T \nabla_{\theta}^2 \mathcal{L}_r(\xi) \nabla_{\theta} \mathcal{L}(\theta_n) + \frac{1}{2} \eta^2 \nabla_{\theta} \mathcal{L}(\theta_n)^T \nabla_{\theta}^2 \mathcal{L}_{u_b}(\xi) \nabla_{\theta} \mathcal{L}(\theta_n)$$
(23)

### **Appendix for further detail** Proof(2) Gradient Descent Failure

Here, note that

 $\nabla_{\theta} \mathcal{L}(\theta_n)^T \nabla_{\theta}^2 \mathcal{L}(\xi) \nabla_{\theta} \mathcal{L}(\theta_n) = \| \nabla_{\theta} \mathcal{L}(\theta_n) \| \nabla_{\theta} \mathcal{L}(\theta_n) = \| \nabla_{\theta} \mathcal{L}(\theta_n) \| \nabla_{\theta} \mathcal{$ 

- = ||` = ||`
- $= \parallel$

$$\nabla_{\theta} \mathcal{L}(\theta_n) \|_2^2 \frac{\nabla_{\theta} \mathcal{L}(\theta_n)^T}{\|\nabla_{\theta} \mathcal{L}(\theta_n)\|} \nabla_{\theta}^2 \mathcal{L}(\xi) \frac{\nabla_{\theta} \mathcal{L}(\theta_n)}{\|\nabla_{\theta} \mathcal{L}(\theta_n)\|}$$
(24)

$$\nabla_{\theta} \mathcal{L}(\theta_n) \|_2^2 x^T Q^T \operatorname{diag}(\lambda_1, \lambda_2 \cdots \lambda_n) Q x \tag{25}$$

$$\nabla_{\theta} \mathcal{L}(\theta_n) \|_2^2 y^T \operatorname{diag}(\lambda_1, \lambda_2 \dots \lambda_M) y \tag{26}$$

$$\|\nabla_{\theta} \mathcal{L}(\theta_n)\|_2^2 \sum_{i=1}^M \lambda_i y_i^2 \tag{27}$$
## Appendix for further detail **Proof(2) Gradient Descent Failure**

where  $x = \frac{\nabla_{\theta} \mathcal{L}(\theta_n)}{\|\nabla_{\theta} \mathcal{L}(\theta_n)\|}$ , Q is an orthogonal matrix diagonalizing  $\nabla_{\theta}^2 \mathcal{L}(\xi)$  and y = Qx. And  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$  are eigenvalues of  $\nabla^2_{\theta} \mathcal{L}(\xi)$ . Similarly, we have

 $\nabla_{\theta} \mathcal{L}(\theta_n)^T \nabla_{\theta}^2 \mathcal{L}_r(\xi) \nabla_{\theta}$ 

 $abla_ heta \mathcal{L}( heta_n)^T 
abla_ heta^2 \mathcal{L}_{u_h}(\xi) 
abla_h$ 

combining these together we get

 $\mathcal{L}(\theta_{n+1}) - \mathcal{L}(\theta_n) = \eta \| \nabla$ 

 $\mathcal{L}_r(\theta_{n+1}) - \mathcal{L}_r(\theta_n) = \eta$ 

 $\mathcal{L}_{u_b}( heta_{n+1}) - \mathcal{L}_{u_b}( heta_n) =$ 

$$\mathcal{PL}(\theta_n) = \| \nabla_{\theta} \mathcal{L}(\theta_n) \|_2^2 \sum_{i=1}^M \lambda_i^r y_i^2$$
(28)

$$\nabla_{\theta} \mathcal{L}(\theta_n) = \|\nabla_{\theta} \mathcal{L}(\theta_n)\|_2^2 \sum_{i=1}^m \lambda_i^{u_b} y_i^2$$
 (29)

where  $\lambda_1^r \leq \lambda_2^r \leq \cdots \leq \lambda_N^r$  and  $\lambda_1^{u_b} \leq \lambda_2^{u_b} \leq \cdots \leq \lambda_N^{u_b}$  are eigenvalues of  $\nabla_{\theta}^2 \mathcal{L}_r$  and  $\nabla_{\theta}^2 \mathcal{L}_{u_b}$  respectively. Thus,

$$\nabla_{\theta} \mathcal{L}(\theta_n) \|_2^2 (-1 + \frac{1}{2} \eta \sum_{i=1}^N \lambda_i y_i^2)$$
 (30)

$$\|\nabla_{\theta} \mathcal{L}(\theta_n)\|_2^2 (-1 + \frac{1}{2}\eta \sum_{i=1}^N \lambda_i^r y_i^2)$$
(31)

$$\eta \| \nabla_{\theta} \mathcal{L}(\theta_n) \|_2^2 (-1 + \frac{1}{2} \eta \sum_{i=1}^N \lambda_i^{u_b} y_i^2)$$
(32)