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Motivation

• PINNs deliver reasonable 
results


• But in some settings they 
perform poorly

3
Burger’s equation: predicted solution  with error u(t, x) L2 : 6.7 * 10−4



Motivation
Example - Helmholtz Equation

• Helmholtz Equation


• Conventional PINN delivers poor results

4

PINN model with 40 layers, 50 neurons per layer, after 40,000 iterations. Relative  error: 0.181L2
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Architecture PINN

• Fully Connected Neural Network


• 4 hidden layers, 50 neurons each 


• 40,000 iterations of training with 
gradient descent

8

Architecture of a regular PINN



Primer in physics-informed neural networks  

• PINNs aim at inferring function 


• Solution to system of nonlinear partial differential equations:


1. 


2. Initial condition: 


3. Boundary condition: 


• No initial/boundary conditions         infinite solutions

u(x, t)

ut + Nx[u] = 0, x ∈ Ω, t ∈ [0,T]

u(x,0) = h(x), x ∈ Ω

u(x, t) = g(x, t), t ∈ [0,T], x ∈ ∂Ω
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Primer in physics-informed neural networks  

• Composite loss function:


• Loss function of residual: 


•   loss function of data fit terms


• e.g., boundary loss


•

Li

Lub
= 1

Nb
∑Nb

i=1 [u(xi
b, ti

b) − gi
b]2
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Gradient Pathologies 
Using Helmholtz Equation

• Revisit the Helmholtz Equation in 2D  


• Remember: PINNs struggle constructing accurate solution


• Now:


• Fabricated solution causing erroneous prediction


• Inspect the gradients of loss terms

12



Gradient Pathologies 
Fabricated Solution

• 


• 


• Simple exact solution: 


• Lets choose   and  

Δu(x, y) + k2u(x, y) = q(x, y), (x, y) ∈ Ω := (−1,1)

u(x, y) = h(x, y), (x, y) ∈ ∂Ω

u(x, y) = sin(a1πx)sin(a2πy)

a1 = 1 a2 = 4
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Gradient Pathologies 
Inspecting gradients

• Revisit the prediction of the PINN


• Fails especially at the boundary


14

PINN model with 40 layers, 50 neurons per layer, after 40,000 iterations. Relative  error: 0.181L2



Gradient Pathologies 
Inspecting gradients

• Imbalanced gradients      Boundary Condition is not enforced


• PDE has multiple solutions       Network finds some (wrong) solution.


• Conclusion: model is biased towards minimizing residual loss Lr(θ)

15

Histograms of back-propagated gradients at each layer, during the 40,000th iteration



Gradient Pathologies 
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The big picture

Gradient Imbalance

Neglecting Conditions
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Gradient Analysis 
What is causing the gradient imbalance ?

• 1D Poisson Equation 


• 


•  and 


• Exact solution: 


• Use PINN  to approximate 


               

Δu(x) = g(x), x ∈ [0,1]

u(x) = h(x), x = 0 x = 1

u(x) = sin(Cx)

fθ(x) u(x)
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Gradient Analysis 
What is causing the gradient imbalance ?

• We can show that:


• 


• 


• Large C         


• Results in presented pathologies

∥∇θLub
(θ)∥L∞ ≤ 2ϵ · ∥∇θϵθ(x)∥L∞

∥∇θLr(θ)∥L∞ ≤ O(C4) · ϵ · ∥∇θϵθ(x)∥L∞

∥∇θLr(θ)∥L∞ > ∥∇θLu(θ)∥L∞

19

Proof (1) in Appendix



What is causing the gradient imbalance ?

• Increasing imbalance with 
increasing C

Histograms of back-propagated gradients per layer, during 40,000th iteration

Gradient Analysis 
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Stiffness in gradient flow dynamics
Root cause of gradient imbalance

• Gradient imbalance for large  values


• Why is this happening, what is the root cause ? 


• Hypotheses:


1. Stiffness exist in gradient flow dynamics of PINNs


2. Stiffness comes along with imbalanced gradients

C
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Stiffness in gradient flow dynamics
What is stiffness (in gradient flow)?

• Large disparity between eigenvalues, characterized by largest  
 
eigenvalue  


• Intuitively corresponds to the curvature of the loss function along specific 
direction


• High stiffness       highly curved loss function with steep slopes
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Stiffness in gradient flow dynamics
Stiffness Example
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Stiffness in gradient flow dynamics
Example Helmholtz Equation

• Simple exact solution: 



• Increasing target complexity 
increases stiffness

u(x, y) = sin(a1πx)sin(a2πy)
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Largest Eigenvalues for the Hessian  during training for different parameters.∇2
θ L(θ)



The big picture

Higher complexity Stiffness

Gradient Imbalance

Neglecting Conditions
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Stiffness in gradient flow dynamics
Stiffness consequences

• The consequences of high stiffness


• 1. Small learning rate and slow convergence


• Conditional stability requires


• 2. Otherwise gradient descent might fail to decrease loss


• even if decent direction is correct

26

Proof(2) in Appendix



Stiffness in gradient flow dynamics
Stiffness Example
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The big picture

Higher complexity Stiffness

>> lr

Gradient Imbalance

Slow convergence

Neglecting Conditions
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Contributions

• M1: Basic Architecture


• M2: Basic Architecture + Algorithm


• M3: New Architecture


• M4: New Architecture + Algorithm
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Balance Gradients
Inspiration - Adam Optimizer

• Momentum: Use gradient from steps before


-> smooth gradient


-> overcome saddle-points


• RMSProp: Scale LR based on magnitude of previous gradients


  -> fast in flat areas / slow in steep areas

(RMSProp = Root Mean Square Propagation)







Loss function: 


GD update: 

34

Loss function: 


GD update: 

Without λ With λ

Balance Losses



Balance Losses
Idea

Max component 
of gradient of

Avg component 
of gradient of



Balance Losses
Idea

Max component 
of gradient of

Avg component 
of gradient of
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Results: M1 vs M2
Helmholtz

M2:        


               more spread out


➡ More balanced

M1:        


               spikes at 0


➡ Imbalanced



Results: M1 vs M2
Helmholtz

‣ 10x less error 
than M1



Novel Architecture
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Novel Architecture

• Fully Connected NN: as in M1
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Novel Architecture

• Fully Connected NN: as in M1


• Encoders: Transforms input into high-dimensional embedding
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Novel Architecture
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Novel Architecture
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Novel Architecture
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Novel Architecture
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• Multiplicative Interactions: accounts for multiplicative relations among 
different input dimensions



Novel Architecture
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• Multiplicative Interactions: accounts for multiplicative relations among 
different input dimensions


• Residual Connections: enhances hidden states -> less vanishing gradient



Results: M1 vs M3
Helmholtz

➡ Less stiffness 



Results: M2 vs M4
Helmholtz

‣ 3x less error 
than M2


‣ 30x less error 
than M1
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The big picture

Higher complexity Stiffness

>> lr

Gradient Imbalance

Slow convergence

Neglecting Conditions



Summary

• Loss terms of different nature cause imbalanced gradients


• Adaptive learning rates balance different terms in loss function


• Novel architectures can prevent gradient-related pathologies


• Loss is reduced by a factor of 50-100x across many problems.


• Developments generalizable to other tasks with multiple objective functions


• Still at very early stages of understanding the capabilities and limitations
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Outlook
Open questions, Further Research needed

• Exact relation unknown: PDE stiffness <-> Gradient Flow stiffness

• Can gradient flow stiffness be reduced? 

(e.g. using domain decomposition techniques, different choices of loss 
functions, more effective neural architectures, etc.)


• If stiffness turns out to be an inherent property of PINNs, what else can we do to 
enhance the robustness of their training and the accuracy of their predictions?


• Can we devise more stable and effective optimization algorithms to train PINN 
models with stiff gradient flow dynamics?


• How does stiffness affect the approximation error and generalization error of 
PINNs?
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Discussion
Our opinion:                   --          -          o          +          ++

• Understandability:                                         []


• Novelty:                                                                                      []


• Replicability:                                                                               []


• Relevance:                                                                                  []
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Thank you!



Questions?



Bonus Slide: How to set up a PINN
Flow in a lid driven cavity

65



Appendix for further detail
Proof(1) Gradient Analysis
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Appendix for further detail
Proof(1) Gradient Analysis
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Appendix for further detail
Proof(1) Gradient Analysis
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Appendix for further detail
Proof(1) Gradient Analysis
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Appendix for further detail
Proof(1) Gradient Analysis
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Appendix for further detail
Proof(2) Gradient Descent Failure
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Appendix for further detail
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Appendix for further detail
Proof(2) Gradient Descent Failure
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