
Solving high-dimensional partial
differential equations using deep
learning

Presented by: Marcel Maciejczyk, Franz Schwinn

Jiequn Han, Arnulf Jentzen and Weinan E

Intro 👋

https://people.math.harvard.edu/~knill/teaching/math22b2022/handouts/lecture13.pdf
https://en.wikipedia.org/wiki/Neural_network_%28machine_learning%29

PDE Deep Learning

Positioning in literature 📍

https://wordclouds.ethz.ch/

Brother context:

font size indicates amount of referenced papers by topic

Recap: PDEs 👩🔬

- Mathematical equations that involve functions of multiple variables and their
partial derivatives

- Example: 1-d heat function:

“How does temperature change over time?”

Recap: PDEs 👩🔬

Recap: PDEs 👩🔬

https://visualpde.com/sim/?preset=heatEquation
https://visualpde.com/sim/?preset=waveEquation

Recap: PDEs 👩🔬

Semilinear Parabolic

L(u)+N(u)=0 Capture
diffusion

Linear

Operator that
defines the pde

is linear

Feynman-Kac
formula (Monte
Carlo method)

Recap: BSDEs 👩🔬

BSDE
Backward Stochastic Differential Equations

❗ Idea of the paper: Reformulate PDEs to BSDE and solve them
using neural networks

SDEs are a type of differential equation that include stochastic terms

random influence

→ Finance, Physics, Biology, Engineering, Control theory…

BSDE: backward in time

Curse of dimensionality problem 😰

- Solving PDEs is hard, as we often operate in high-dimensional space

Dim: 3 169 507 24’883’200 89’579’520’000

…

Curse of dimensionality problem 😰

- PDEs depend on many variables
- Problem? → Exponential increase in computational resources!
- Finite difference method

Curse of dimensionality problem 😰

Curse of dimensionality problem 😰

Richard Bellman, 1961

Universal approximation theorem 📄
“Neural network with a
single hidden layer
containing a finite
number of neurons
can approximate any
continuous function on
compact subsets of
Rn”

→ why can we even use neural nets?

Universal approximation theorem 📄

- Involved functions in parabolic PDEs are
typically continuous

- The UAT provides theoretical justification
for using neural networks to approximate
solutions to PDEs

Brownian motion

Random walk Brownian motion

https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif.
https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif.

https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif
https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

Brownian motion

Brownian motion (also called Wiener process) has the following properties:

https://www.quantstart.com/articles/brownian-motion-simulation-with-python/

Objective of the paper
Solve semilinear parabolic PDEs with some specified terminal condition u(T,x) = g(x)

t represents time
x represents a d-dimensional space variable
μ is a known vector-valued function
σ is a known matrix-valued function (d×d)
σT denotes transpose associated to σ

⛛u denotes the gradient of function u with respect to x
Hessxu denotes the Hessian of function u with respect to x
Tr denotes the trace of a matrix
f is a known non-linear function

Goal: find the solution at t=0, x=ξ for some vector ξ∊Rd

https://www.semanticscholar.org/paper/Numerical-algorithms-for-backward-stochastic-with-Peng-Xu/a3d03cb8b557ffa6b48a3c7c87cc8f0f22fd18b9

Maths behind the paper 🧮

Let { Wt }t∊[0, T] be a d-dimensional Brownian motion, and { Xt }t∊[0, T] be a d-
dimensional stochastic process that satisfies:

Itô’s integral

Maths behind the paper 🧮

By Feynman-Kac formula, and Itô formula, the solution u to the PDE satisfies the following BSDE:

*for details of the derivation refer to “Monte-Carlo Methods and
Stochastic Processes” p. 206, 207

Maths behind the paper 🧮
We apply temporal discretization to the two equations with partition 0=t0 < t1 < … < tN=T:

where:

Euler scheme

Solving the BSDE
stochastic process X

terminal condition

Structure of the neural network 🕸

To simplify presentation σ satisfies: ∀x∊Rd: σ(x)=Id

Feedforward neural network approximating the spatial gradients at time t=tN

Θ1

Terminal condition

Structure of the neural network 🕸

- The total set of parameters is

- One can use a standard stochastic gradient descent algorithm to optimize Θ

Implementation 💻

- Each subnetwork has 4 layers
- d-dimensional input layer
- two (d+10)-dimensional hidden-layers
- d-dimensional output layer

- Optimizer: Adam
- Activation function: ReLU

https://www.researchgate.net/figure/ReLU-function-graph_fig2_346250677
https://github.com/frankhan91/DeepBSDE/blob/master/solver.py

Examples in practice 1 (finance) 📈

Parabolic PDEs (Black-Scholes equations), allow to deduce the theoretical estimate
of the price of European-style options.

Options are financial derivatives that give
buyers the right, but not the obligation, to
buy or sell an underlying asset at an
agreed-upon price and date.

European-style options can only be
exercised on the day of expiration.

https://www.flaticon.com/free-icon/stock-market_6798995\
https://en.m.wikipedia.org/wiki/File:Flag_of_Europe.svg

Examples in practice 1 (finance) 📈

Traditional Black-Scholes model can be extended by some important factors in
real markets, including defaultable securities, transaction costs etc.

Disregarded: default risk

https://www.imd.org/research-knowledge/economics/articles/the-european-crisis-business-threats-and-opportunities/

Examples in practice 1 (finance) 📈
The associated Black-Scholes equation in [0, T] × R100

f

Examples in practice 1 (finance) 📈

The deep BSDE method achieves a relative error of size 0.46%

Traditional approximative Picard method
≈57.300

training time 1607s

Examples in practice 2 (HJB) 💻

- Hamilton-Jacobi-Bellman equation is a concept of control theory
- Deals with the control of dynamic systems
- Typical questions are:

- Is the system stable?
- Is it possible to bring the system to a certain state of choice?
- How should the input variable be chosen in order to achieve a target state in the

shortest possible time and with the least amount of effort?

→ Highly relevant in practice

Examples in practice 2 (HJB) 💻

value function with
respect to time

minimum over all
possible control

inputs u

instantaneous cost
incurred by applying
control u at state x at

time t

value function with respect
to state x

system evolves over time in
response to the control

input u

Examples in practice 2 (HJB) 💻

→ relative error of size 0.17% in a run time of 303s (MacBook Pro)

Conclusion (pros) 💭

- The paper introduces an effective method for solving high-dimensional
parabolic PDEs, overcoming the curse of dimensionality problem
→ relative error of size 0.46% (compared to benchmark solution for Black-Scholes equation)
→ training time 1607s (MacBook Pro with a 2.9GHz Intel Core i5 Processor and 16GB RAM)

- Opens up new possibilities in economics, finance, and operational research

- Similar methodology can be used to solve model based stochastic control
problems, in which the optimal policies are approximated by neural nets

Conclusion (challenges) 💭

According to paper: Not able to deal with the quantum many-body problem

→ Behaviour of systems composed of many interacting quantum particles

✅ Classical physics: Predicting interactions is possible

❌ Quantum physics: Not applicable due to its laws

Conclusion (further questions) 💭

Payoff?

Theoretical
guarantees?

Hyperparameter
optimization?

Impact & follow-up work

- Beck et al. 2017 (deep 2BSDE method)
- Henry-Labordére 2017 (deep primal-dual for BSDEs)
- Fujii et al. 2017 (deep BSDE with asymptotic expansion)
- Becker et al. 2018 (deep optimal stopping)
- Raissi 2018, Beck et al. 2018, Chan-Wai-Nam et al. 2018, Huré et al. 2019
- European Journal of Applied Mathematics

Thank you for your attention!

Questions?

Sources

- J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. U.S.A.115, 8505–
8510 (2018)

- https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
- https://en.wikipedia.org/wiki/Wiener_process#:~:text=In%20mathematics%2C%20the%20Wiener%20process,the%20one%2Ddimensional%20B

rownian%20motion.
- https://visualpde.com/
- https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
- https://web.math.princeton.edu/~weinan/control.pdf
- Emmanuel Gabet, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear

