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https://people.math.harvard.edu/~knill/teaching/math22b2022/handouts/lecture13.pdf
https://en.wikipedia.org/wiki/Neural_network_%28machine_learning%29



Positioning in literature ¢

Brother context:




Recap: PDEs &

- Mathematical equations that involve functions of multiple variables and their
partial derivatives
- Example: 1-d heat function:
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“How does temperature change over time?”




Vi

Recap: PDEs
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Recap: PDEs &
Linear Semilinear Parabolic
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Recap: BSDEs €

BSDE random influence

Backward Stochastic Differential Equations /

SDEs are a type of differential equation that include stochastic terms

— Finance, Physics, Biology, Engineering, Control theory...

BSDE: backward in time

!' Idea of the paper: Reformulate PDEs to BSDE and solve them
using neural networks




Curse of dimensionality problem &

- Solving PDEs is hard, as we often operate in high-dimensional space

age
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Dim: 24'883'200 89'579'520°000




Curse of dimensionality problem &

PDEs depend on many variables
Problem? — Exponential increase in computational resources!

Finite difference method




Curse of dimensionality problem &
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Universal approximation theorem

— why can we even use neural nets? “Neural network with a

single hidden layer
containing a finite
number of neurons

can approximate any
continuous function on

| compact subsets of
Rnll
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Universal approximation theorem >

- Involved functions in parabolic PDEs are
typically continuous

- The UAT provides theoretical justification
for using neural networks to approximate
solutions to PDEs
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Brownian motion

Random walk Brownian motion
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https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif.
https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif.


https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif
https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

Brownian motion

Brownian motion (also called Wiener process) has the following properties:

1. W, = 0 almost surely
W has indepdent increments: W,,, — W, are independent of the past values ;, s <t

2.
3. W has Gaussian increments: W;,,, — W, ~ N(0,u)
4. W has almost surely continuous paths

Standard Brownian Motion sample paths

Asset Value
=]

https://www.quantstart.com/articles/brownian-motion-simulation-with-python/




Objective of the paper

Solve semilinear parabolic PDEs with some specified terminal condition u(T,x) = g(x)

%(t, T)+ %Tr (aaT(t, x)(Hesszu)(t, (E))+ Vu(t,z) u(t,z)+ f (t, z,u(t,z),0" (t,z)Vu(t, ’E)): 0

t represents time

X represents a d-dimensional space variable
p is a known vector-valued function

o is a known matrix-valued function (dxd)
o' denotes transpose associated to o

Vu denotes the gradient of function u with respect to x
Hess,u denotes the Hessian of function u with respect to x
Tr denotes the trace of a matrix
f is a known non-linear function

Goal: find the solution at t=0, x=€ for some vector £€Rd




https://www.semanticscholar.org/paper/Numerical-algorithms-for-backward-stochastic-with-Peng-Xu/a3d03cb8b557ffa6b48a3c7c87cc8f0f22fd18b9



Maths behind the paper

Let { W;}iq0, 17 De a d-dimensional Brownian motion, and { X;};4 17 be a d-
dimensional stochastic process that satisfies:

t t
Xt:ﬁ—l—/ (s, Xs) ds—l—/ o(s, Xs) dWs.
Jo Jo

It6’s integral




Maths behind the paper
By Feynman-Kac formula, and 1t6 formula, the solution u to the PDE satisfies the following BSDE:

u(t, X¢) —u(0, Xo)

t
:—/ f(S,Xs,’U,(S,XS),O'T(S,XS)V’M(S,XS)) ds

L2 ()

t
+/ Vau(s, X,)|" o(s, X,) dW,.

L2 ()

*for details of the derivation refer to “Monte-Carlo Methods and
Stochastic Processes” p. 206, 207



Maths behind the paper

We apply temporal discretization to the two equations with partition 0=t, < t; < ... < ty=T:

t t
Xt:é—*_ / /L(S,Xs) dS‘I‘ / 0-(57X3) de. ‘th-}-l _th %'U,(tn,th)Atn"'o-(tn,th)AWn

Jo Jo
U(t,Xt)_'U/(O, XO) ‘ u(tn+17th+1) - 'U,(tn,th)
t m
= — / f(s, Xs, u(s, Xs), (rT(s, Xs) Vu(s, Xs)) ds ~—f (tn, Kb WU e X ) g (s X ) M ai( B th)) At M
Jo

t = + v tnaX N t’n,X AWn,
+ / [V'U,(S, Xg)] > O'(S, XS‘) d‘/I/9 [ ’U/( fn)] J( tn)

J0

Euler scheme

where: At,=tp41—tn, AW,=W,  , — W,

n41



Solving the BSDE

stochastic process X
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Structure of the neural network
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Feedforward neural network approximating the spatial gradients at time t=ty

UT(t"7 th) vu(tnﬂ th) == (UTVU)(t7l7 XLn) ~ (O'TVU)(tn, Xttn |9n)
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Structure of the neural network &

- The total set of parameters is 0 ={0uy, Ovug,01,...,0n-1}

- One can use a standard stochastic gradient descent algorithm to optimize 0




L]
I m I e m e n-t a-t I O n ! class FeedForwardSubNet (tf.keras.Model):
e ——
p ] def _ init_ (self, config):

super(FeedForwardSubNet, self)._ init_ ()
dim = config.eqn_config.dim

num_hiddens = config.net_config.num_hiddens

- Each subnetwork has 4 layers ce1f.br_Layers - [

tf.keras.layers.BatchNormalization(

- d-dimensional input layer R
_ _Ai . . _ epsilon=1le-6,
tWO (d+10) dlmenS|onaI hldden |ayers beta_initializer=tf.random_normal_initializer(0.0, stddev=0.1),

- d_dlmensional ou‘tput |ayer gamma_initializer=tf.random uniform_initializer(0.1, 0.5)
)
- Optlmlzer: Adam for _ in range(len(num_hiddens) + 2)]

self.dense_layers = [tf.keras.layers.Dense(num_hiddens[i],
- Activation function: ReLU RS,
activation=None)
for i in range(len(num_hiddens))]
f(x) # final output should be gradient of size dim
self.dense_layers.append(tf.keras.layers.Dense(dim, activation=None))

41 def call(self, x, training):

"""structure: bn -> (dense -> bn -> relu) * len(num_hiddens) -> dense -> bn"""
x = self.bn_layers[0](x, training)

24 for i in range(len(self.dense_layers) - 1):

x = self.dense_layers[i](x)

x = self.bn_layers[i+1](x, training)

x = tf.nn.relu(x)

-4 -2 0 2 - X
X

self.dense_layers[-1](x)

) ) ) x = self.bn_layers[-1](x, training)
https://www.researchgate.net/figure/ReLU-function-graph_fig2_346250677 -

https://github.com/frankhan91/DeepBSDE/blob/master/solver.py return x



Examples in practice 1 (finance) ~

Parabolic PDEs (Black-Scholes equations), allow to deduce the theoretical estimate
of the price of European-style options.

Options are financial derivatives that give
buyers the right, but not the obligation, to
buy or sell an underlying asset at an
agreed-upon price and date.

European-style options can only be
exercised on the day of expiration.

https://www.flaticon.com/free-icon/stock-market_6798995\
https://en.m.wikipedia.org/wiki/File:Flag_of_Europe.svg



Examples in practice 1 (finance) ~

Traditional Black-Scholes model can be extended by some important factors in
real markets, including defaultable securities, transaction costs etc.

Disregarded: default risk

https://www.imd.org/research-knowledge/economics/articles/the-european-crisis-business-threats-and-opportunities/



Examples in practice 1 (finance) ~

The associated Black-Scholes equation in [0, T] x R100

—(1-90)Q(u u(t gy — Rt 5)=0
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Examples in practice 1 (finance) ~
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Traditional approximative Picard method
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The deep BSDE method achieves a relative error of size 0.46%



Examples in practice 2 (HJB) ®

- Hamilton-Jacobi-Bellman equation is a concept of control theory
- Deals with the control of dynamic systems
- Typical questions are:
- Is the system stable?
- s it possible to bring the system to a certain state of choice?
- How should the input variable be chosen in order to achieve a target state in the
shortest possible time and with the least amount of effort?

— Highly relevant in practice




Examples in practice 2 (HJB) ®

%—‘:+n1dn{L(w u t)—l—VV f(fU u,t)} =0
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inputs u time t




Examples in practice 2 (HJB) ®
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— relative error of size 0.17% in a run time of 303s (MacBook Pro)



Conclusion (pros)

- The paper introduces an effective method for solving high-dimensional

parabolic PDEs, overcoming the curse of dimensionality problem
— relative error of size 0.46% (compared to benchmark solution for Black-Scholes equation)
— training time 1607s (MacBook Pro with a 2.9GHz Intel Core i5 Processor and 16GB RAM)

- Opens up new possibilities in economics, finance, and operational research

- Similar methodology can be used to solve model based stochastic control
problems, in which the optimal policies are approximated by neural nets




Conclusion (challenges) -

According to paper: Not able to deal with the quantum many-body problem

— Behaviour of systems composed of many interacting quantum particles

Classical physics: Predicting interactions is possible

X Quantum physics: Not applicable due to its laws




Conclusion (further questions)

Hyperparameter
optimization?

Theoretical
guarantees?




Impact & follow-up work

- Beck et al. 2017 (deep 2BSDE method)

- Henry-Labordére 2017 (deep primal-dual for BSDES)

- Fujii et al. 2017 (deep BSDE with asymptotic expansion)

- Becker et al. 2018 (deep optimal stopping)

- Raissi 2018, Beck et al. 2018, Chan-Wai-Nam et al. 2018, Huré et al. 2019
- European Journal of Applied Mathematics




Thank you for your attention!

Questions?
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