Solving high-dimensional partial
differential equations using deep
learning

Jiequn Han, Arnulf Jentzen and Weinan E

Presented by: Marcel Maciejczyk, Franz Schwinn

Intro <J

PDE Deep Learning

Hidden

Input

Output

Vit —Vex +SINv =0

https://people.math.harvard.edu/~knill/teaching/math22b2022/handouts/lecture13.pdf
https://en.wikipedia.org/wiki/Neural_network_%28machine_learning%29

Positioning in literature ¢

Brother context:

Recap: PDEs &

- Mathematical equations that involve functions of multiple variables and their
partial derivatives
- Example: 1-d heat function:

ou 0%u
— = a—
ot Ox?

“How does temperature change over time?”

Vi

Recap: PDEs

?Temperatu
[\

80 T

Recap: PDEs &

Recap: PDEs &
Linear Semilinear Parabolic

Operator that
defines the pde

is linear //'
/ -

Feynman-Kac
formula (Monte
Carlo method)

Capture

L(u)+N(u)=0 diffusion

Recap: BSDEs €

BSDE random influence

Backward Stochastic Differential Equations /

SDEs are a type of differential equation that include stochastic terms

— Finance, Physics, Biology, Engineering, Control theory...

BSDE: backward in time

!' Idea of the paper: Reformulate PDEs to BSDE and solve them
using neural networks

Curse of dimensionality problem &

- Solving PDEs is hard, as we often operate in high-dimensional space

age
gender
blood ty pe

Dim: 24'883'200 89'579'520°000

Curse of dimensionality problem &

PDEs depend on many variables
Problem? — Exponential increase in computational resources!

Finite difference method

Curse of dimensionality problem &

£ / / / Richard Bellman, 1961

//// //
] P e fiamgenon

i

Universal approximation theorem

— why can we even use neural nets? “Neural network with a

single hidden layer
containing a finite
number of neurons

can approximate any
continuous function on

| compact subsets of
Rnll

1=
Achl/a&'ﬂ'? %mc)x‘of)i RCLM

Universal approximation theorem >

- Involved functions in parabolic PDEs are
typically continuous

- The UAT provides theoretical justification
for using neural networks to approximate
solutions to PDEs

l{(x)-%) | s

Ac‘ihﬁ'm %AI\J«‘D/)' RJ,M /

Brownian motion

Random walk Brownian motion
=

E

Dht

ii
3
L]
g
LT
.

Iifﬁ% ':f. .'.. - I..:-ql‘.:':.‘:.’.:.

https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif.
https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif.

https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif
https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

Brownian motion

Brownian motion (also called Wiener process) has the following properties:

1. W, = 0 almost surely
W has indepdent increments: W,,, — W, are independent of the past values ;, s <t

2.
3. W has Gaussian increments: W;,,, — W, ~ N(0,u)
4. W has almost surely continuous paths

Standard Brownian Motion sample paths

Asset Value
=]

https://www.quantstart.com/articles/brownian-motion-simulation-with-python/

Objective of the paper

Solve semilinear parabolic PDEs with some specified terminal condition u(T,x) = g(x)

%(t, T)+ %Tr (aaT(t, x)(Hesszu)(t, (E))+ Vu(t,z) u(t,z)+ f (t, z,u(t,z),0" (t,z)Vu(t, ’E)): 0

t represents time

X represents a d-dimensional space variable
p is a known vector-valued function

o is a known matrix-valued function (dxd)
o' denotes transpose associated to o

Vu denotes the gradient of function u with respect to x
Hess,u denotes the Hessian of function u with respect to x
Tr denotes the trace of a matrix
f is a known non-linear function

Goal: find the solution at t=0, x=€ for some vector £€Rd

https://www.semanticscholar.org/paper/Numerical-algorithms-for-backward-stochastic-with-Peng-Xu/a3d03cb8b557ffa6b48a3c7c87cc8f0f22fd18b9

Maths behind the paper

Let { W;}iq0, 17 De a d-dimensional Brownian motion, and { X;};4 17 be a d-
dimensional stochastic process that satisfies:

t t
Xt:ﬁ—l—/ (s, Xs) ds—l—/ o(s, Xs) dWs.
Jo Jo

It6’s integral

Maths behind the paper
By Feynman-Kac formula, and 1t6 formula, the solution u to the PDE satisfies the following BSDE:

u(t, X¢) —u(0, Xo)

t
:—/ f(S,Xs,’U,(S,XS),O'T(S,XS)V’M(S,XS)) ds

L2 ()

t
+/ Vau(s, X,)|" o(s, X,) dW,.

L2 ()

*for details of the derivation refer to “Monte-Carlo Methods and
Stochastic Processes” p. 206, 207

Maths behind the paper

We apply temporal discretization to the two equations with partition 0=t, < t; < ... < ty=T:

t t
Xt:é—*_ / /L(S,Xs) dS‘I‘ / 0-(57X3) de. ‘th-}-l _th %'U,(tn,th)Atn"'o-(tn,th)AWn

Jo Jo
U(t,Xt)_'U/(O, XO) ‘ u(tn+17th+1) - 'U,(tn,th)
t m
= — / f(s, Xs, u(s, Xs), (rT(s, Xs) Vu(s, Xs)) ds ~—f (tn, Kb WU e X) g (s X) M ai(B th)) At M
Jo

t = + v tnaX N t’n,X AWn,
+ / [V'U,(S, Xg)] > O'(S, XS‘) d‘/I/9 [’U/(fn)] J(tn)

J0

Euler scheme

where: At,=tp41—tn, AW,=W, , — W,

n41

Solving the BSDE

stochastic process X

08"
06

gzl

04

wtntt, Xy yy)
'Uz(tn, XLn) _f (tn, Xl,n, 'U/(tn, th), O'T(tn, th) V’U,(tn, Xl,n)> Atn -+ [VU(tn, th)]T O'(tn, th) A Wn

e

? ?

Structure of the neural network

A N - ™ y ™\
‘.\wu(to’ XI())/// s);\lu(tl] XI])/ 7 > \u(i’ @/‘ /)
V”(’O, Xt()) Vu(t],X[l) Vu(tZs XI2)
M) -
T f
PR . 4
hy hy
.
Wfl - Wfo Wl‘z - Wfl —

To simplify presentation o satisfies: vxeRd: o(x)=1d

Vu(tN—l) X’N—l)

P
Myt

y- P R
———> ulty-1. Xy,) ———> ultn, Xyy)
\\7) 4 ~._

\

)

u(tr, Xp) ———> e u(ty-1.X,,.,) ulty, Xuy)
...... L
ok
hy_y
X, -V ox, —— x, —1— ... — X,,
...... it = il =
=1 =1 t=1l = ese e I = 1In-1 r=1yn

Feedforward neural network approximating the spatial gradients at time t=ty

UT(t"7 th) vu(tnﬂ th) == (UTVU)(t7l7 XLn) ~ (O'TVU)(tn, Xttn |9n)

/ \ Y 4 %‘ 0 o 0
\ u(to, Xto) u(tl) X[]) u(tza Xl‘z ey e TR \ u(tN_l’Xf!\'—l) }——’_)‘ u(th XtN) J
. : J S
Vulto, X,,) Vultr, X,) ——
4 7) (" H) .
\) \ h2) :
¢
Xto ——3 eae eee Xt/v
— WfN—l - W’N—: Wt,v = W’N—l
=1 =1 =1 eeeee I = 1IN-1 =1y

3%

W tag1, th+1) ~
w(tn, X1,) —f(tn Xo, u(tn, X0,), 0™ (tn, X0,) Vtu(tn, X0,)) At + [Va(tn, X,,)]" 0 (tn, X0,) AW,

Vu(t()s Xto)

X["n.—{—l ~ X{"n, + /,L(tn, XLn) Atn + O-(tn, Xl'n) A W'n,

......

u(t(), XI())

Vu(t09 Xto)

u(tz s Xlz)

Vu(tz ’ X12)

W, —

=

J

[(0)=E [\Q(XLN) — @ ({Xu, Jo<n<n, { Wi, Jo<n<n) |2]

Terminal condition

u(tN [} XIN)

:

Structure of the neural network &

- The total set of parameters is 0 ={0uy, Ovug,01,...,0n-1}

- One can use a standard stochastic gradient descent algorithm to optimize 0

L]
I m I e m e n-t a-t I O n ! class FeedForwardSubNet (tf.keras.Model):
e ——
p] def _ init_ (self, config):

super(FeedForwardSubNet, self)._ init_ ()
dim = config.eqn_config.dim

num_hiddens = config.net_config.num_hiddens

- Each subnetwork has 4 layers ce1f.br_Layers - [

tf.keras.layers.BatchNormalization(

- d-dimensional input layer R
_ _Ai . . _ epsilon=1le-6,
tWO (d+10) dlmenS|onaI hldden |ayers beta_initializer=tf.random_normal_initializer(0.0, stddev=0.1),

- d_dlmensional ou‘tput |ayer gamma_initializer=tf.random uniform_initializer(0.1, 0.5)
)
- Optlmlzer: Adam for _ in range(len(num_hiddens) + 2)]

self.dense_layers = [tf.keras.layers.Dense(num_hiddens[i],
- Activation function: ReLU RS,
activation=None)
for i in range(len(num_hiddens))]
f(x) # final output should be gradient of size dim
self.dense_layers.append(tf.keras.layers.Dense(dim, activation=None))

41 def call(self, x, training):

"""structure: bn -> (dense -> bn -> relu) * len(num_hiddens) -> dense -> bn"""
x = self.bn_layers[0](x, training)

24 for i in range(len(self.dense_layers) - 1):

x = self.dense_layers[i](x)

x = self.bn_layers[i+1](x, training)

x = tf.nn.relu(x)

-4 -2 0 2 - X
X

self.dense_layers[-1](x)

))) x = self.bn_layers[-1](x, training)
https://www.researchgate.net/figure/ReLU-function-graph_fig2_346250677 -

https://github.com/frankhan91/DeepBSDE/blob/master/solver.py return x

Examples in practice 1 (finance) ~

Parabolic PDEs (Black-Scholes equations), allow to deduce the theoretical estimate
of the price of European-style options.

Options are financial derivatives that give
buyers the right, but not the obligation, to
buy or sell an underlying asset at an
agreed-upon price and date.

European-style options can only be
exercised on the day of expiration.

https://www.flaticon.com/free-icon/stock-market_6798995\
https://en.m.wikipedia.org/wiki/File:Flag_of_Europe.svg

Examples in practice 1 (finance) ~

Traditional Black-Scholes model can be extended by some important factors in
real markets, including defaultable securities, transaction costs etc.

Disregarded: default risk

https://www.imd.org/research-knowledge/economics/articles/the-european-crisis-business-threats-and-opportunities/

Examples in practice 1 (finance) ~

The associated Black-Scholes equation in [0, T] x R100

—(1-90)Q(u u(t gy — Rt 5)=0
N |

m\l\R

t,CL’ +§Tr oot)(Hesszu) +Vu t,x)

Examples in practice 1 (finance) ~

58 | | | | |

Traditional approximative Picard method
Ao - =57.300

training time 1607s

.,100))
wow
N

! |

T

(100,..
3
|
T

u(t=0x=
B H
[«)] o
| |
| |

H
H
|

|

H
N

| | | | |
1000 2000 3000 4000 5000 6000
Number of iteration steps

o

The deep BSDE method achieves a relative error of size 0.46%

Examples in practice 2 (HJB) ®

- Hamilton-Jacobi-Bellman equation is a concept of control theory
- Deals with the control of dynamic systems
- Typical questions are:
- Is the system stable?
- s it possible to bring the system to a certain state of choice?
- How should the input variable be chosen in order to achieve a target state in the
shortest possible time and with the least amount of effort?

— Highly relevant in practice

Examples in practice 2 (HJB) ®

%—‘:+n1dn{L(w u t)—l—VV f(fU u,t)} =0
| K '

system evolves over time in
response to the control
input u

value function with respect

value function with
to state x

respecttotime instantaneous cost
minimum over all incurred by applying
possible control y y
) control u at state x at
inputs u time t

Examples in practice 2 (HJB) ®

10° : ‘ '
10-1-5 3

102+ s

Relative approximation error

| | I
0 500 1000 1500 2000
Number of iteration steps

— relative error of size 0.17% in a run time of 303s (MacBook Pro)

Conclusion (pros)

- The paper introduces an effective method for solving high-dimensional

parabolic PDEs, overcoming the curse of dimensionality problem
— relative error of size 0.46% (compared to benchmark solution for Black-Scholes equation)
— training time 1607s (MacBook Pro with a 2.9GHz Intel Core i5 Processor and 16GB RAM)

- Opens up new possibilities in economics, finance, and operational research

- Similar methodology can be used to solve model based stochastic control
problems, in which the optimal policies are approximated by neural nets

Conclusion (challenges) -

According to paper: Not able to deal with the quantum many-body problem

— Behaviour of systems composed of many interacting quantum particles

Classical physics: Predicting interactions is possible

X Quantum physics: Not applicable due to its laws

Conclusion (further questions)

Hyperparameter
optimization?

Theoretical
guarantees?

Impact & follow-up work

- Beck et al. 2017 (deep 2BSDE method)

- Henry-Labordére 2017 (deep primal-dual for BSDES)

- Fujii et al. 2017 (deep BSDE with asymptotic expansion)

- Becker et al. 2018 (deep optimal stopping)

- Raissi 2018, Beck et al. 2018, Chan-Wai-Nam et al. 2018, Huré et al. 2019
- European Journal of Applied Mathematics

Thank you for your attention!

Questions?

Sources

- J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. U.S.A.115, 8505-
8510 (2018)

- https://web.mit.edu/8.334/www/grades/projects/projects17/0scarMickelin/brownian.html

- https://en.wikipedia.org/wiki/Wiener_process#:~:text=In%20mathematics%2C%20the%20Wiener%20process,the%200ne%2Ddimensional %20B
rownian%20motion.

- https://visualpde.com/

- https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model

- https://web.math.princeton.edu/~weinan/control.pdf

- Emmanuel Gabet, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear

