Choose a Transformer: Fourier or Galerkin

Shuhao Cao

Simon Storf

Summary

- The author combines 2 state-of-the-art methods:
 - Transformers
 - Fourier Neural Operators
- New variants of self-attention

Presentation Overview

- Prerequisites
 - Operator Learning
 - Transformers
- Paper
- Discussion

Prerequisites

What is a Neural Operator?

Operator learning problem for parametric PDE

- Map from functions to functions
- Map from parameters + initial + boundary conditions to solution (or inverse)
- Approximate entire families of solutions for PDEs

Operator learning problem discretized

Fourier Neural Operator:

The discretized operator learning problem is a **seq2seq** problem

Machines

Input	Thinking	Machines
Embedding	X 1	X2
Queries	q 1	q ₂
Keys	k 1	k ₂
Values	V1	V2
Score	$q_1 \cdot k_1 = 112$	$q_1 \cdot k_2 = 96$
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V1	V2
Sum	Z1	Z ₂

×

WV

=

Κ

V

Х

Z

Ζ

=

étudiant

 $Q, K, V \in \mathbb{R}^{n \times d}$

 $Q,K,V \in \mathbb{R}^{n imes d}$ $O\left(n^2 d\right)$

The Galerkin Transformer

The Fourier Transformer

Mathematical Interpretation

$$z_j(x):=\sum_{l=1}^d \mathfrak{b}\,(k_l,v_j)q_l(x), ext{ for }j=1,\cdots,d, ext{ and }x\in\{x_i\}_{i=1}^n$$

Mathematical Interpretation

$$z_j(x):=\sum_{l=1}^d \mathfrak{b}\,(k_l,v_j)q_l(x), ext{ for }j=1,\cdots,d, ext{ and }x\in\{x_i\}_{i=1}^n$$

$$\mathbf{z}_j = \left(Q\left(\widetilde{K}^T \widetilde{V}
ight)
ight)_j = \sum_{i=1}^d \left(\widetilde{K}_i \cdot \widetilde{V}_j
ight) Q_i$$

Mathematical Interpretation

$$z_j(x):=\sum_{l=1}^d \mathfrak{b}\,(k_l,v_j)q_l(x), ext{ for }j=1,\cdots,d, ext{ and }x\in\{x_i\}_{i=1}^n$$

$$\mathbf{z}_j = \left(Q\left(\widetilde{K}^T \widetilde{V}
ight)
ight)_j = \sum_{i=1}^d \left(\widetilde{K}_i \cdot \widetilde{V}_j
ight) Q_i$$

$$\mathfrak{b}\left(k_{l},v_{j}
ight)=\left(\widetilde{K}_{i}\cdot\widetilde{V}_{j}
ight)$$

$$\begin{cases} \partial_t u + u \partial_x u = \nu \partial_{xx} u & \text{ for } (x,t) \in (0,1) \times (0,1], \\ u(x,0) = u_0(x) \text{ for } x \in (0,1), \end{cases}$$

$$T: C_p^0(\Omega) \cap L^2(\Omega) \to C_p^0(\Omega) \cap H^1(\Omega), \quad u_0(\cdot) \mapsto u(\cdot, 1)$$

	n = 512	n = 2048	n = 8192
FNO1d [57]	15.8	14.6	13.9
FNO1d 1cycle	4.373	4.126	4.151
FT regular Ln	1.400	1.477	1.172
GT regular Ln	2.181	1.512	2.747
ST regular Ln	1.927	2.307	1.981
LT regular Ln	1.813	1.770	1.617
FT Ln on Q, K	1.135	1.123	1.071
GT Ln on K, V	1.203	1.150	1.025
ST Ln on Q, K	1.271	1.266	1.330
LT Ln on K, V	1.139	1.149	1.221

$$\begin{cases} -\nabla \cdot (a\nabla u) = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega \end{cases}$$

$$T: L^{\infty}(\Omega) \to H^1_0(\Omega), \quad a \mapsto u$$

10

- 0.000175 - 0.000150 - 0.000125 - 0.000100 - 0.000075 - 0.000050 - 0.000025

	$n_f, n_c = 141, 43$	$n_f, n_c = 211, 61$
FNO2d [57]	1.09	1.09
FNO2d 1cycle	1.419	1.424
FT regular Ln	0.838	0.847
GT regular Ln	0.894	0.856
ST regular Ln	1.075	1.131
LT regular Ln	1.024	1.130
FT Ln on Q, K	0.873	0.921
GT Ln on K, V	0.839	0.844
ST Ln on Q, K	0.946	0.959
LT Ln on K, V	0.875	0.970

$$\begin{cases} -\nabla \cdot (a\nabla u) = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega \end{cases}$$

 $T: H_0^1(\Omega) \to L^\infty(\Omega), u + \epsilon N_\nu(u) \mapsto a$

(e)

(d)

(f)

	$n_f, n_c = 141, 36$		$n_f, n_c = 211, 71$			
	$\epsilon = 0$	$\epsilon = 0.01$	$\epsilon = 0.1$	$\epsilon = 0$	$\epsilon = 0.01$	$\epsilon = 0.1$
FNO2d (only n_f)	13.71	13.78	15.12	13.93	13.96	15.04
FNO2d (only n_c)	14.17	14.31	17.30	13.60	13.69	16.04
FT regular Ln	1.799	2.467	6.814	1.563	2.704	8.110
GT regular Ln	2.026	2.536	6.659	1.732	2.775	8.024
ST regular Ln	2.434	3.106	7.431	2.069	3.365	8.918
LT regular Ln	2.254	3.194	9.056	2.063	3.544	9.874
FT Ln on Q, K	1.921	2.717	6.725	1.523	2.691	8.286
$\operatorname{GT}\operatorname{Ln}\operatorname{on}K,V$	1.944	2.552	6.689	1.651	2.729	7.903
ST Ln on Q, K	2.160	2.807	6.995	1.889	3.123	8.788
LT Ln on K, V	2.360	3.196	8.656	2.136	3.539	9.622

Discussion
Strengths

- Insightful contribution to "linearizing" transformers
- Well designed Experiments and solid results

Strengths

- Insightful contribution to "linearizing" transformers
- Well designed Experiments and solid results

Weaknesses

- Operator must exhibit low dimensional attributes
- Not efficient to apply at full resolution
- Encoder only

Conclusion

- The paper proposes a very versatile transformer variant
- Improves the state of the art operator learner
- Speed ups in geoscience, medical imaging and NLP

Thank you

Sources

https://jalammar.github.io/illustrated-transformer/

https://openreview.net/forum?id=ssohLcmn4-r

https://github.com/scaomath/galerkin-transformer

https://towardsdatascience.com/galerkin-transformer-a-one-shot-experiment-atneurips-2021-96efcbaefd3e

https://scaomath.github.io/blog/galerkin-transformer/

Sources

https://medium.com/@bogdan.raonke/operator-learning-convolutional-neural-op erators-for-robust-and-accurate-learning-of-pdes-ebbc43b57434#:~:text=Once %20trained%2C%20Neural%20Operators%20solely.distinguishing%20them%2 0from%20traditional%20solvers.