
FOURIER NEURAL OPERATOR FOR PARAMETRIC
PARTIAL DIFFERENTIAL EQUATIONS

(Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, Anima Anandkumar)

Challenges in Science and Engineering

Challenges in Science and Engineering

Solving complicated partial differential equations (PDE) systems is
extremely important

Examples

Solving PDEs

PDEs TODAY

Challenges in Science and Engineering

Examples

Solving PDEs

Challenges in Science and Engineering
Challenges in Science and Engineering

Solving complicated partial differential equations (PDE) systems is
extremely important

PDEs TODAY

Challenges in Science and Engineering

Solving PDEs

Examples
Examples

Molecular dynamics, micro-mechanics, turbulent flows, etc.

PDEs TODAY

Challenges in Science and Engineering

Solving PDEs

Examples
Examples

Molecular dynamics, micro-mechanics, turbulent flows, etc.

PDEs TODAY

Examples

Challenges in Science and Engineering

Solving PDEs
Solving PDEs

Conventional solvers vs data-driven methods

PDEs TODAY

Conventional solvers VS Data-Driven methods

Conventional solvers Data-Driven methods

VS

Examples:
Finite Element Methods (FEM)
Finite Difference Methods (FDM)

Trade-off:
Coarse Grids: Faster but less
accurate
Fine Grids: Accurate but slow

Challenge:
Complicated PDEs require fine
discretization to capture the
phenomenon

Conventional solvers

VS

Data-Driven methods

Coarse grid

Fine grid

Examples:
Finite Element Methods (FEM)
Finite Difference Methods (FDM)

Trade-off:
Coarse Grids: Faster but less
accurate
Fine Grids: Accurate but slow

Challenge:
Complicated PDEs require fine
discretization to capture the
phenomenon

Conventional solvers

VS

Data-Driven methods

Coarse grid

Fine grid

Conventional solvers Data-Driven methods

Direct Learning:
Learn trajectories directly from
data
Better runtime

Challenge:
Classical Neural Networks (NNs)
still limited by discretization

Solution:
Develop discretization-invariant
Neural Operators (NOs)

VS

Examples:
Finite Element Methods (FEM)
Finite Difference Methods (FDM)

Trade-off:
Coarse Grids: Faster but less
accurate
Fine Grids: Accurate but slow

Challenge:
Complicated PDEs require fine
discretization to capture the
phenomenon

- New neural operator
- Parametrize the integral kernel
- In the Fourier space

PAPER’S WORKExperiments on Burgers’ equation,
Darcy flow, and Navier-Stokes equation

- Three orders of magnitude faster
- Superior accuracy

-
- Parametrize the integral kernel in the
Fourier space

New neural operator

-
- Parametrize the integral kernel in the
Fourier space

New neural operator

New neural operator

Key features

• Infinite-Dimensional Operator

• Unified Parameters

→ Discretization-Invariance

→ Solution Transfer

• Data-Driven

NEURAL OPERATORS

New neural operator

New neural operator-
- Parametrize the integral kernel in the
Fourier space

New neural operator

Fourier space

FOURIER SPACE

Differentiation Multiplication

FOURIER SPACE

Differentiation Multiplication

Potentially a lot faster!

-
- Parametrize the integral kernel in the
Fourier space

New neural operator

-
- Parametrize the integral kernel in the
Fourier space

New neural operator

PAPER’S WORKExperiments on Burgers’ equation,
Darcy flow, and Navier-Stokes equation

- Three orders of magnitude faster
- Superior accuracy

-
- Parametrize the integral kernel in the
Fourier space

New neural operator

PAPER’S WORKExperiments on Burgers’ equation,
Darcy flow, and Navier-Stokes equation

- Three orders of magnitude faster
- Superior accuracy

New neural operatorExperiments on Burgers’ equation,
Darcy flow, and Navier-Stokes equation

New neural operator
Navier-Stokes equation

NAVIER-STOKES EQUATION

• Models fluid dynamics

NAVIER-STOKES EQUATION

• Models fluid dynamics

• Extremely useful
v Airflow? → Planes, weather, etc.
v Blood flow? → Medical diagnostics tools
v Etc.

NAVIER-STOKES EQUATION

• Models fluid dynamics

• Extremely useful
v Airflow? → Planes, weather, etc.
v Blood flow? → Medical diagnostics tools
v Etc.

NAVIER-STOKES EQUATION

• Models fluid dynamics

• Extremely useful
v Airflow? → Planes, weather, etc.
v Blood flow? → Medical diagnostics tools
v Etc.

• Can be tweaked to model non-Newtonian
fluids and turbolence (Reynolds number)

• Models fluid dynamics

• Extremely useful
v Airflow? → Planes, weather, etc.
v Blood flow? → Medical diagnostics tools
v Etc.

• Can be tweaked to model non-Newtonian
fluids and turbolence (Reynolds number)

NAVIER-STOKES EQUATION

NAVIER-STOKES EQUATION

!
𝜕!𝑤 𝑥, 𝑡 + 𝑢 𝑥, 𝑡 · ∇𝑤 𝑥, 𝑡 = 𝜈∆𝑤 𝑥, 𝑡 + 𝑓 𝑥

∇ · 𝑢 𝑥, 𝑡 = 0
𝑤 𝑥, 0 = 𝑤"(𝑥)

!
𝜕!𝒘 𝑥, 𝑡 + 𝒖 𝑥, 𝑡 · 𝜵𝒘 𝑥, 𝑡 = 𝝂∆𝒘 𝑥, 𝑡 + 𝒇 𝑥

𝜵 · 𝒖 𝑥, 𝑡 = 0
𝒘 𝑥, 0 = 𝒘𝟎(𝑥)

NAVIER-STOKES EQUATION

𝒖 : velocity field
𝒘 : vorticity
𝜵: gradient
∆: Laplacian
𝝂 : viscosity coefficient
𝒇 : forcing function

NAVIER-STOKES EQUATION

!
𝜕!𝒘 𝑥, 𝑡 + 𝒖 𝑥, 𝑡 · 𝜵𝒘 𝑥, 𝑡 = 𝝂∆𝒘 𝑥, 𝑡 + 𝒇 𝑥

𝜵 · 𝒖 𝑥, 𝑡 = 0
𝒘 𝑥, 0 = 𝒘𝟎(𝑥)

𝒖 : velocity field
𝒘 : vorticity
𝜵: gradient
∆: Laplacian
𝝂 : viscosity coefficient
𝒇 : forcing function

OPERATOR LEARNING

GOAL
Learn a mapping 𝑮!
Inputs 𝐚 𝐱 ∈ 𝓐 = 𝓐(𝑫;ℝ𝒅𝒂)
Outputs 𝐮 𝒙 ∈ 𝓤 = 𝓤 𝑫;ℝ𝒅𝒖

OPERATOR LEARNING

GOAL
Learn a mapping 𝑮2
Inputs 𝐚 𝐱 ∈ 𝓐 = 𝓐(𝑫;ℝ𝒅𝒂)
Outputs 𝐮 𝒙 ∈ 𝓤 = 𝓤 𝑫;ℝ𝒅𝒖

OPERATOR LEARNING

GOAL
Learn a mapping 𝑮!

Inputs 𝐚 𝐱 ∈ 𝓐 = 𝓐(𝑫;ℝ𝒅𝒂)
Outputs 𝐮 𝒙 ∈ 𝓤 = 𝓤 𝑫;ℝ𝒅𝒖

OPERATOR LEARNING

GOAL
Learn a mapping 𝑮!
Inputs 𝐚 𝐱 ∈ 𝓐 = 𝓐(𝑫;ℝ𝒅𝒂)

Outputs 𝐮 𝒙 ∈ 𝓤 = 𝓤 𝑫;ℝ𝒅𝒖

OPERATOR LEARNING

HOW Construct parametric map such that 𝑮𝜽# is as close as possible to 𝑮!.

THE NEURAL OPERATOR

THE NEURAL OPERATOR

Lift input to higher dimension:
𝒗𝟎 𝒙 = 𝑷(𝒂 𝒙)

𝑃:ℝ%$ ↦ ℝ%%, parametrized by a
shallow fully-connected NN

THE NEURAL OPERATOR

THE NEURAL OPERATOR

Iterative architecture:
𝒗𝟎 𝒙 ⟼ … ↦ 𝒗𝑻 𝒙 , 𝒙 ∈ ℝ𝒅𝓿

THE NEURAL OPERATOR

Iteration: 𝒗𝒕 ⟼ 𝒗𝐭)𝟏

The output 𝒖 𝒙 = 𝑸 𝒗𝑻 𝒙 ,
𝑄:ℝ%% ↦ ℝ%$

THE NEURAL OPERATOR

The output 𝒖 𝒙 = 𝑸 𝒗𝑻 𝒙 ,
𝑄:ℝ%% ↦ ℝ%$

THE NEURAL OPERATOR

Iteration: 𝒗𝒕 ⟼ 𝒗𝐭)𝟏

Iterative architecture:
𝒗𝟎 𝒙 ⟼ … ↦ 𝒗𝑻 𝒙 , 𝒙 ∈ ℝ𝒅𝓿

𝑃:ℝ%$ ↦ ℝ%%, parametrized by a
shallow fully-connected NN

Lift input to higher dimension:
𝒗𝟎 𝒙 = 𝑷(𝒂 𝒙)

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫𝜎

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

∶ ℝ → ℝ
Non-linear activation function
Component-wise operations

𝜎

∶ ℝ → ℝ

Non-linear activation function

Component-wise operations

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫𝑊

𝜎

: ℝ$! → ℝ$!
Linear transformation
Spatial domain

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

𝑊

∶ ℝ → ℝ

Non-linear activation function

Component-wise operations

𝜎

𝓚

: ℝ$! → ℝ$!
Linear transformation
Spatial domain

𝑊

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

∶ ℝ → ℝ

Non-linear activation function

Component-wise operations

𝜎

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫𝓚

∶ ℝ → ℝ

Non-linear activation function

Component-wise operations

𝜎

: ℝ!! → ℝ!!
Linear transformation
Spatial domain

𝑊

∶ 𝒜 × Θ𝒦 → ℒ 𝒰 𝐷; ℝ$! , 𝒰 𝐷; ℝ$!

Maps to operators on 𝒰 𝐷; ℝ$!
parameterized by 𝜙 ∈ Θ𝒦

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

𝓚
: ℝ!! → ℝ!!

Linear transformation
Spatial domain

𝑊

∶ ℝ → ℝ

Non-linear activation function

Component-wise operations

𝜎

∶ 𝒜 × Θ𝒦 → ℒ 𝒰 𝐷; ℝ!! , 𝒰 𝐷; ℝ!!

Maps to operators on 𝒰 𝐷; ℝ!!
parameterized by 𝜙 ∈ Θ𝒦

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

: ℝ!! → ℝ!!
Linear transformation
Spatial domain

𝑊

𝒦

∶ ℝ → ℝ

Non-linear activation function

Component-wise operations

𝜎

∶ 𝒜 × Θ𝒦 →
ℒ 𝒰 𝐷; ℝ1! , 𝒰 𝐷; ℝ1!

Maps to operators on 𝒰 𝐷; ℝ1!
parameterized by 𝜙 ∈ Θ𝒦

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

∶ ℝ → ℝ

Non-linear
activation function
Component-wise
operations

𝜎 : ℝ1! → ℝ1!
Linear
transformation
Spatial domain

𝑊 𝓚

𝒗𝒕)𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

𝒦 𝑎; 𝜙 𝑣! 𝑥 ≔ ,
"
𝓀 𝑥, 𝑦, 𝑎 𝑥 , 𝑎 𝑦 ; 𝜙 𝑣! 𝑦 𝑑𝑦, ∀𝑥 ∈ 𝐷

where𝓀+ ∶ ℝ,(%)%') → ℝ%% ×%% is a NN parameterized by 𝜙 ∈ Θ𝒦 è kernel function

𝓚 𝒂; 𝝓 𝒗𝒕 𝒙𝒗𝒕$𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + , ∀𝒙 ∈ 𝑫

KERNEL INTEGRAL OPERATOR

𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 ≔ ,
𝑫
𝓴 𝒙, 𝒚, 𝒂 𝒙 , 𝒂 𝒚 ; 𝝓 𝒗𝒕 𝒚 𝒅𝒚

𝒗𝒕%𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙

NEURAL OPERATOR

Linear integral operator

Neural Operator learns non-linear
operators:

• Linear integral operators
+

• Non-linear activation functions

𝓚 𝒂; 𝝓 𝒗𝒕 𝒙

≔ M
𝑫
𝓴 𝒙, 𝒚, 𝒂 𝒙 , 𝒂 𝒚 ; 𝝓 𝒗𝒕 𝒚 𝒅𝒚

𝒗𝒕)𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙

NEURAL OPERATOR

Removing dependence of 𝑎
+

 𝓀# 𝑥, 𝑦, 𝑎 𝑥 , 𝑎 𝑦 = 𝓀# x − y, 𝑎 𝑥 , 𝑎 𝑦
𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 ≔
∫𝑫 𝓴 𝒙, 𝒚, 𝒂 𝒙 , 𝒂 𝒚 ; 𝝓 𝒗𝒕 𝒚 𝒅𝒚

𝒗𝒕)𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 Removing dependence of 𝑎
+

 𝓀# 𝑥, 𝑦, 𝑎 𝑥 , 𝑎 𝑦 = 𝓀# x − y, 𝑎 𝑥 , 𝑎 𝑦

è Convolution operator

NEURAL OPERATOR

Removing dependence of 𝑎
+

 𝓀& 𝑥, 𝑦, 𝑎 𝑥 , 𝑎 𝑦 = 𝓀& x − y, 𝑎 𝑥 , 𝑎 𝑦

Fourier transform convolution è pointwise product Fourier transforms

Theorem
Removing	dependence	of	𝑎	

+	
	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

CONVOLUTION THEOREM

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ,𝑢 𝑥 − 𝜏 𝑣(𝜏) 𝑑𝜏

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

CONVOLUTION THEOREM

Theorem

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ℱ23{𝑈 n 𝑉}
Where 𝑈 𝑓 ≜ ℱ 𝑢 𝑓 ; 𝑉 𝑓 ≜ ℱ 𝑣 𝑓

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = =𝑢 𝑥 − 𝜏 𝑣(𝜏) 𝑑𝜏

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

CONVOLUTION THEOREM

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ℱ23{𝑈 n 𝑉}
Where 𝑈 𝑓 ≜ ℱ 𝑢 𝑓 ; 𝑉 𝑓 ≜ ℱ 𝑣 𝑓

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

CONVOLUTION THEOREM

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ℱ23{𝑈 n 𝑉}
Where 𝑈 𝑓 ≜ ℱ 𝑢 𝑓 ; 𝑉 𝑓 ≜ ℱ 𝑣 𝑓

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

ℱ𝑓 B 𝑘 = =
C
𝑓B(𝑥)𝑒DEFG H,I 𝑑𝑥 ℱDJ𝑓 B 𝑥 = =

C
𝑓B(𝑘)𝑒EFG H,I 𝑑𝑘

CONVOLUTION THEOREM

ℱ(𝓀!)𝒦 𝑎; 𝜙 𝑣! 𝑥 = ∫t 𝓀 𝑥 − 𝑦; 𝜙 𝑣! 𝑦 𝑑𝑦 = ∫u∞
∞ 𝑢 𝑥 − 𝜏 𝑣(𝜏) 𝑑𝜏 ,

∀𝑥 ∈ 𝐷
𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))()

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ℱ23{𝑈 n 𝑉}
Where 𝑈 𝑓 ≜ ℱ 𝑢 𝑓 ; 𝑉 𝑓 ≜ ℱ 𝑣 𝑓

APPLICATION

ℱ(𝓀!)𝒦 𝑎; 𝜙 𝑣! 𝑥 = ∫t 𝓀 𝑥 − 𝑦; 𝜙 𝑣! 𝑦 𝑑𝑦 = ∫𝑢 𝑥 − 𝜏 𝑣(𝜏) 𝑑𝜏 ,
∀𝑥 ∈ 𝐷

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))()

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ℱ23{𝑈 n 𝑉}
Where 𝑈 𝑓 ≜ ℱ 𝑢 𝑓 ; 𝑉 𝑓 ≜ ℱ 𝑣 𝑓

APPLICATION

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ∫t 𝓀 𝑥 − 𝑦; 𝜙 𝑣! 𝑦 𝑑𝑦 = ℱuv(ℱ(𝓀w) X ℱ(𝑣!))(𝑥),
∀𝑥 ∈ 𝐷

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))()ℱ(𝓀!)

Removing	dependence	of	𝑎	
+	

	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

Theorem

𝑟 𝑥 = 𝑢 ∗ 𝑣 𝑥 = ℱ23{𝑈 n 𝑉}
Where 𝑈 𝑓 ≜ ℱ 𝑢 𝑓 ; 𝑉 𝑓 ≜ ℱ 𝑣 𝑓

APPLICATION

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))(𝑥)ℱ(𝓀!)

→ 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒 𝓀& 𝑖𝑛 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑝𝑎𝑐𝑒

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))(𝑥)𝑹𝝓

FOURIER INTEGRAL OPERATOR

𝑹𝝓𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))(𝑥)
𝑅1 Fourier transform of periodic function κ

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))(𝑥)𝑅!
𝑅1 Fourier transform of periodic function κ

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))(𝑥)𝑅!
𝑅1 Fourier transform of periodic function κ

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$(, ℱ(𝑣"))(𝑥)𝑅!
𝑅1 Fourier transform of periodic function κ

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ23(ℱ(𝓀1) Y ℱ(𝑣!))(𝑥)
↓

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ℱ23(𝑅1 Y ℱ(𝑣!))(𝑥)

FOURIER INTEGRAL OPERATOR

Assumed 𝓀w periodic

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ23(ℱ(𝓀1) Y ℱ(𝑣!))(𝑥)
↓

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ℱ23(𝑅1 Y ℱ(𝑣!))(𝑥)

FOURIER INTEGRAL OPERATOR

ℱ𝑓 B 𝑘 = =
C
𝑓B(𝑥)𝑒DEFG H,I 𝑑𝑥

↓
Fourier series expansion

↓
Work with the discrete modes 𝓀w ∈ ℤx

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱuv(X ℱ(𝑣!))(𝑥)

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ23(ℱ(𝓴𝝓) Y ℱ(𝑣!))(𝑥)
↓

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ℱ23(𝑅1 Y ℱ(𝑣!))(𝑥)

FOURIER INTEGRAL OPERATOR

ℱ𝑓 B 𝑘 = =
C
𝑓B(𝑥)𝑒DEFG H,I 𝑑𝑥

↓
Work with the discrete modes 𝓀w ∈ ℤx

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱuv(X ℱ(𝑣!))(𝑥)

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ23(ℱ(𝓴𝝓) Y ℱ(𝑣!))(𝑥)
↓

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ℱ23(𝑅1 Y ℱ(𝑣!))(𝑥)

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱuv(X ℱ(𝑣!))(𝑥)𝑅w
𝑅+ Fourier transform of periodic function κ

Finite-dimensional parameterization è Truncating at 𝑘���

FOURIER INTEGRAL OPERATOR

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ"#(ℱ(𝓀$) ,
ℱ(𝑣!))(𝑥)

↓
𝒦 𝑎;𝜙 𝑣! 𝑥
= ℱ"#(𝑅$, ℱ(𝑣!))(𝑥)

↓
Finite-dimensional parameterization

è Truncating at 𝑘%&'

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ23(ℱ(𝓀1) Y ℱ(𝑣!))(𝑥)
↓

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ℱ23(𝑅1 Y ℱ(𝑣!))(𝑥)
↓

Finite-dimensional parameterization è Truncating at 𝑘567

SO FAR

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ23(ℱ(𝓀1) Y ℱ(𝑣!))(𝑥)
↓

𝒦 𝑎; 𝜙 𝑣! 𝑥 = ℱ23(𝑅1 Y ℱ(𝑣!))(𝑥)
↓

Finite-dimensional parameterization è Truncating at 𝑘567

SO FAR

𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱuv(ℱ(𝓀w) X
ℱ(𝑣!))(𝑥)

↓
𝒦 𝑎;𝜙 𝑣! 𝑥
= ℱuv(𝑅w X ℱ(𝑣!))(𝑥)

↓
Finite-dimensional

parameterization è Truncating
at 𝑘���

𝑅w X ℱ(𝑣!)
↓

Point-wise	multiplication
+

Lying in different dimensions
↓

Truncate	higher modes of	ℱ 𝑣!
↓

(𝑅 X (ℱ�$)) �,� =s
��v

x%

𝑅�,�,�(ℱ�$)�,�

DISCRETE FOURIER TRANSFORM

ℱ𝑓 � 𝑘 = t
t
𝑓�(𝑥)𝑒u��� �,� 𝑑𝑥

↓
ℱ𝑓 �[𝑘] = s

��"

�uv

𝑓�[𝑥]𝑒
u��� �,�

�
𝑤ℎ𝑒𝑟𝑒: 𝑘 ∈ − P𝑘'()

2 , … , P𝑘'()
2

DISCRETE FOURIER TRANSFORM

Nℱ𝑓 ' 𝑘 =S
("

)"

… S
(#

)#*+

𝑓'(𝑥+, … , 𝑥$)𝑒*,-.
∑$%"
(0

𝑤ℎ𝑒𝑟𝑒: 𝑙 = 1,… , 𝑑1

ℱ𝑓 4 𝑘 = M
5
𝑓4(𝑥)𝑒2,67 8,: 𝑑𝑥

↓

ℱ𝑓 4[𝑘] = �
8;<

=23

𝑓4[𝑥]𝑒
2,67 8,:

=

𝑤ℎ𝑒𝑟𝑒: 𝑘 ∈ − *𝑘!"#
2 ,… , *𝑘!"#

2

FAST FOURIER TRANSFORM

• The Fourier layers are
discretization-invariant

INVARIANCE TO DISCRETIZATION

• The Fourier layers are
discretization-invariant

Parameters learned in Fourier space
↓

Projecting on the basis 𝑒ESF⟨H,I⟩
→ Physical space

↓

Well-defined everywhere on ℝ1 + Consistent error at any
resolution

INVARIANCE TO DISCRETIZATION

INVARIANCE TO DISCRETIZATION

• Inner multiplication has complexity O(𝑘567)
• Fourier transforms have complexity O(n𝑘567)

RUNTIME

• Inner multiplication has complexity O(𝑘567)
• Fourier transforms have complexity O(n𝑘567)

FFT has complexity O(𝑛𝑙𝑜𝑔(𝑛))
↓

Uniform discretization is required

RUNTIME

NUMERICAL EXPERIMENTS

• 4 Fourier layers

+ ReLU

+ Batch normalization

• 500 epochs

• Learning rate: 0.001, halved every 100
epochs

THE MODEL

• 1-d Burgers’ equation

• 2-d Darcy Flow problem

• 2-d Navier-Stokes equation

• Bayesian Inverse Problem

TESTS

SIMULATION

• Compared against other popular solvers

SIMULATION

• Compared against other popular solvers

• Two different Fourier Neural Operators:

v FNO-2D learns spatial relation between time steps to predict next step

SIMULATION

• Compared against other popular solvers

• Two different Fourier Neural Operators:

v FNO-2D learns spatial relation between time steps to predict next step

2DConv

SIMULATION

• Compared against other popular solvers

• Two different Fourier Neural Operators:

v FNO-2D learns spatial relation between time steps to predict next step

v FNO-3D learns full space-time relation of whole interval

2DConv

SIMULATION

• Compared against other popular solvers

• Two different Fourier Neural Operators:

v FNO-2D learns spatial relation between time steps to predict next step

v FNO-3D learns full space-time relation of whole interval

2DConv

3DConv

SIMULATION

• With sufficient data:

SIMULATION

• With sufficient data:

FNO-3D

SIMULATION

• With sufficient data:

FNO-3D

SIMULATION

• With insufficient data:

• With sufficient data:

FNO-3D

FNO-2D

SIMULATION

FNO-2D

• With insufficient data:

• With sufficient data:

FNO-3D

SIMULATION

FOURIER NEURAL OPERATOR WINS!FOURIER NEURAL OPERATOR WINS!

Speed and Accuracy:
• Speedy & no accuracy degradation

• Effective in downstream applications

Approximates:
• Highly non-linear operators with high frequency modes and slow

energy decay

KEY FEATURES

Resolution-Invariant Solution Operator:
• First for Navier-Stokes equations in the turbulent

regime

Shared Parameters:
• Maintains same learned network parameters

KEY FEATURES

Capable of zero-shot super-resolution:
• Training lower resolution è Evaluated higher

resolution

KEY FEATURES

Capable of zero-shot super-resolution:
• Training lower resolution è Evaluated higher

resolution

