FOURIER NEURAL OPERATOR FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS

(Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar)

Eren Homburg

Luca Apolloni

Challenges in Science and Engineering

Solving complicated partial differential equations (PDE) systems is extremely important

Examples

Challenges in Science and Engineering

Solving complicated partial differential equations (PDE) systems is extremely important

Examples

Challenges in Science and Engineering

Examples

Molecular dynamics, micro-mechanics, turbulent flows, etc.

Challenges in Science and Engineering

Examples

Molecular dynamics, micro-mechanics, turbulent flows, etc.

Examples

Solving PDEs

Conventional solvers vs data-driven methods

Conventional solvers

VS

Data-Driven methods

Data-Driven methods **Conventional solvers** VS

Conventional solvers

Examples:

Finite Element Methods (FEM) Finite Difference Methods (FDM)

VS

Trade-off:

Coarse Grids: Faster but less accurate Fine Grids: Accurate but slow

Challenge:

Complicated PDEs require fine discretization to capture the phenomenon

Data-Driven methods

Coarse grid

Conventional solvers

Examples:

Finite Element Methods (FEM) Finite Difference Methods (FDM)

VS

Trade-off:

Coarse Grids: Faster but less accurate Fine Grids: Accurate but slow

Challenge:

Complicated PDEs require fine discretization to capture the phenomenon

Data-Driven methods

Coarse grid

Conventional solvers

Examples:

Finite Element Methods (FEM) Finite Difference Methods (FDM)

Trade-off:

Coarse Grids: Faster but less accurate Fine Grids: Accurate but slow

Challenge:

Complicated PDEs require fine discretization to capture the phenomenon

Data-Driven methods

Direct Learning:

- Learn trajectories directly from data
- Better runtime

Challenge:

VS

Classical Neural Networks (NNs) still limited by discretization

Solution:

Develop discretization-invariant Neural Operators (NOs)

- New neural operator
- Parametrize the integral kernel in the Fourier space

PAPER'S WORK

- Three orders of magnitude faster
- Superior accuracy

- New neural operator

- Parametrize the integral kernel in the Fourier space

NEURAL OPERATORS

Key features

- Infinite-Dimensional Operator
- Unified Parameters
 - → Discretization-Invariance
 - → Solution Transfer
- Data-Driven

- New neural operator

- Parametrize the integral kernel in the Fourier space

FOURIER SPACE

Multiplication

FOURIER SPACE

Potentially a lot faster!

- New neural operator

- Parametrize the integral kernel in the Fourier space

- New neural operator
- Parametrize the integral kernel in the Fourier space

PAPER'S WORK

- Three orders of magnitude faster
- Superior accuracy

- New neural operator
- Parametrize the integral kernel in the Fourier space

PAPER'S WORK

- Three orders of magnitude faster
- Superior accuracy

Navier-Stokes equation

• Models fluid dynamics

• Models fluid dynamics

- Extremely useful
 - ☆ Airflow? → Planes, weather, etc.
 - ✤ Blood flow? → Medical diagnostics tools
 - Etc.

Models fluid dynamics

- Extremely useful
 - ↔ Airflow? → Planes, weather, etc.
 - ✤ Blood flow? → Medical diagnostics tools
 - ✤ Etc.

Models fluid dynamics

- Extremely useful
 - ☆ Airflow? → Planes, weather, etc.
 - ♣ Blood flow? → Medical diagnostics tools
 - ✤ Etc.

• Can be tweaked to model non-Newtonian fluids and turbolence (Reynolds number)

Models fluid dynamics

- Extremely useful
 - ☆ Airflow? → Planes, weather, etc.
 - ♣ Blood flow? → Medical diagnostics tools
 - ✤ Etc.

• Can be tweaked to model non-Newtonian fluids and turbolence (Reynolds number)

 $\begin{cases} \partial_t w(x,t) + u(x,t) \cdot \nabla w(x,t) = \nu \Delta w(x,t) + f(x) \\ \nabla \cdot u(x,t) = 0 \\ w(x,0) = w_0(x) \end{cases}$

 $\begin{aligned} \partial_t \mathbf{w}(x,t) + \mathbf{u}(x,t) \cdot \nabla \mathbf{w}(x,t) &= \mathbf{v} \Delta \mathbf{w}(x,t) + \mathbf{f}(x) \\ \nabla \cdot \mathbf{u}(x,t) &= 0 \\ \mathbf{w}(x,0) &= \mathbf{w}_0(x) \end{aligned}$

𝔐: velocity field
𝔐: vorticity
𝔽: gradient
Δ: Laplacian
𝒱: viscosity coefficient
ƒ: forcing function

 $\begin{cases} \partial_t \mathbf{w}(x,t) + \mathbf{u}(x,t) \cdot \nabla \mathbf{w}(x,t) = \mathbf{v} \Delta \mathbf{w}(x,t) + \mathbf{f}(x) \\ \nabla \cdot \mathbf{u}(x,t) = 0 \\ \mathbf{w}(x,0) = \mathbf{w}_0(x) \end{cases}$

U: velocity field

W: vorticity

V: gradient

∆: Laplacian

 $\boldsymbol{\nu}$: viscosity coefficient

f: forcing function

OPERATOR LEARNING

Learn a mapping G^{\dagger} Inputs $\mathbf{a}(\mathbf{x}) \in \mathcal{A} = \mathcal{A}(D; \mathbb{R}^{d_a})$ Outputs $\mathbf{u}(\mathbf{x}) \in \mathcal{U} = \mathcal{U}(D; \mathbb{R}^{d_u})$

GOAL

GOALLearn a mapping G^{\dagger} Inputs $a(x) \in \mathcal{A} = \mathcal{A}(D; \mathbb{R}^{d_a})$ Outputs $u(x) \in \mathcal{U} = \mathcal{U}(D; \mathbb{R}^{d_u})$

Learn a mapping G^{\dagger} GOALInputs $\mathbf{a}(\mathbf{x}) \in \mathcal{A} = \mathcal{A}(\mathbf{D}; \mathbb{R}^{d_a})$ Outputs $\mathbf{u}(x) \in \mathcal{U} = \mathcal{U}(\mathbf{D}; \mathbb{R}^{d_u})$

GOAL

Learn a mapping G^{\dagger} Inputs $\mathbf{a}(\mathbf{x}) \in \mathcal{A} = \mathcal{A}(D; \mathbb{R}^{d_a})$ Outputs $\mathbf{u}(\mathbf{x}) \in \mathcal{U} = \mathcal{U}(D; \mathbb{R}^{d_u})$

HOW Construct parametric map such that $G_{\theta^{\dagger}}$ is as close as possible to G^{\dagger} .

Lift input to higher dimension: $v_0(x) = P(a(x))$

$P: \mathbb{R}^{d_u} \mapsto \mathbb{R}^{d_v}$, parametrized by a shallow fully-connected NN

Iteration:
$$v_t \mapsto v_{t+1}$$

The **output** $u(x) = Q(v_T(x)),$ $Q: \mathbb{R}^{d_v} \mapsto \mathbb{R}^{d_u}$

Lift input to higher dimension: $v_0(x) = P(a(x))$

 $P: \mathbb{R}^{d_u} \mapsto \mathbb{R}^{d_v}$, parametrized by a shallow fully-connected NN

Iterative architecture: $v_0(x) \mapsto \dots \mapsto v_T(x), x \in \mathbb{R}^{d_v}$

Iteration: $v_t \mapsto v_{t+1}$

The output $u(x) = Q(v_T(x))$, $Q: \mathbb{R}^{d_v} \mapsto \mathbb{R}^{d_u}$

$v_{t+1}(x) \coloneqq \sigma(Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x)),$

$v_{t+1}(x) \coloneqq \sigma (Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x)),$

$v_{t+1}(x) := \sigma(Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x)),$

 $\sigma: \mathbb{R} \to \mathbb{R}$ Non-linear activation function Component-wise operations

$v_{t+1}(x) \coloneqq \sigma \big(W v_t(x) + (\mathcal{K}(a; \phi) v_t)(x) \big),$

$\forall x \in D$

$\sigma \colon \mathbb{R} \to \mathbb{R}$

Non-linear activation function

Component-wise operations

Fourier layer v(x)W

$v_{t+1}(x) := \sigma(Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x)),$

 $\forall x \in D$

$\sigma \colon \mathbb{R} \to \mathbb{R}$

Non-linear activation function

Component-wise operations

 $W: \mathbb{R}^{d_{\mathcal{V}}} \to \mathbb{R}^{d_{\mathcal{V}}}$ Linear transformation Spatial domain

$v_{t+1}(x) := \sigma(Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x)),$

 $\forall x \in D$

$\sigma \colon \mathbb{R} \to \mathbb{R}$

Non-linear activation function

Component-wise operations

 $W: \mathbb{R}^{d_{\mathcal{V}}} \to \mathbb{R}^{d_{\mathcal{V}}}$ Linear transformation Spatial domain

$v_{t+1}(x) \coloneqq \sigma \big(W v_t(x) + (\mathcal{K}(a; \phi) v_t)(x) \big),$

 $\forall x \in D$

$\sigma: \mathbb{R} \to \mathbb{R}$

Non-linear activation function

Component-wise operations

$W: \mathbb{R}^{d_{\mathcal{V}}} \to \mathbb{R}^{d_{\mathcal{V}}}$

Linear transformation Spatial domain

$$v_{t+1}(x) := \sigma \big(W v_t(x) + (\mathcal{K}(a; \phi) v_t)(x) \big), \qquad \forall x \in D$$

$\sigma \colon \mathbb{R} \to \mathbb{R}$

Non-linear activation function

Component-wise operations

 $W: \mathbb{R}^{d_v} \to \mathbb{R}^{d_v}$ Linear transformation Spatial domain

$$\mathcal{K}: \mathcal{A} \times \Theta_{\mathcal{K}} \to \mathcal{L}\left(\mathcal{U}(D; \mathbb{R}^{d_{v}}), \mathcal{U}(D; \mathbb{R}^{d_{v}})\right)$$

Maps to operators on $\mathcal{U}(D; \mathbb{R}^{d_{v}})$ parameterized by $\phi \in \Theta_{\mathcal{K}}$

$v_{t+1}(x) \coloneqq \sigma \big(W v_t(x) + (\mathcal{K}(a; \phi) v_t)(x) \big),$

$\sigma \colon \mathbb{R} \to \mathbb{R}$

Non-linear activation function Component-wise operations

 $W: \mathbb{R}^{d_{v}} \rightarrow \mathbb{R}^{d_{v}}$ Linear transformation Spatial domain

 $\mathcal{K}: \mathcal{A} \times \Theta_{\mathcal{K}} \to \mathcal{L}\left(\mathcal{U}(D; \mathbb{R}^{d_{v}}), \mathcal{U}(D; \mathbb{R}^{d_{v}})\right)$

Maps to operators on $\mathcal{U}(D; \mathbb{R}^{d_v})$ parameterized by $\phi \in \Theta_{\mathcal{K}}$

$v_{t+1}(x) \coloneqq \sigma \big(W v_t(x) + (\mathcal{K}(a; \phi) v_t)(x) \big),$

$\forall x \in D$

$\sigma: \mathbb{R} \to \mathbb{R}$

Non-linear activation function

Component-wise operations

 $W: \mathbb{R}^{d_{v}} \to \mathbb{R}^{d_{v}}$ Linear transformation Spatial domain $\begin{aligned} \boldsymbol{\mathcal{K}} &: \boldsymbol{\mathcal{A}} \times \boldsymbol{\Theta}_{\boldsymbol{\mathcal{K}}} \to \\ \mathcal{L}\left(\mathcal{U}(D; \ \mathbb{R}^{d_{\boldsymbol{\mathcal{V}}}}), \mathcal{U}(D; \ \mathbb{R}^{d_{\boldsymbol{\mathcal{V}}}}) \right) \end{aligned}$

Maps to operators on $\mathcal{U}(D; \mathbb{R}^{d_v})$ parameterized by $\phi \in \Theta_{\mathcal{K}}$

KERNEL INTEGRAL OPERATOR

$$(\mathcal{K}(a; \phi)v_t)(x) \coloneqq \int_D \&(x, y, a(x), a(y); \phi)v_t(y) \, dy, \qquad \forall x \in \mathbb{R}^{2(d+d_a)} \to \mathbb{R}^{d_v \times d_v} \text{ is a NN parameterized by } \phi \in \Theta_{\mathcal{K}} \xrightarrow{\bullet} \text{ kernel function}$$

 $v_{t+1}(x) \coloneqq \sigma(Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x)),$

NEURAL OPERATOR

$$v_{t+1}(x) \coloneqq \sigma (Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x))$$

$$(\mathcal{K}(a; \phi)v_t)(x) \coloneqq \int_D \mathscr{k}(x, y, a(x), a(y); \phi)v_t(y) \, dy$$

NEURAL OPERATOR

 $v_{t+1}(x) \coloneqq \sigma \big(W v_t(x) + (\mathcal{K}(a; \phi) v_t)(x) \big)$

$$(\mathcal{K}(a; \phi)v_t)(x)$$
$$\coloneqq \int_D \mathscr{k}(x, y, a(x), a(y); \phi)v_t(y) \, dy$$

Linear integral operator

Neural Operator learns non-linear operators:

- Linear integral operators
 +
- Non-linear activation functions

NEURAL OPERATOR

$$v_{t+1}(x) \coloneqq \sigma (Wv_t(x) + (\mathcal{K}(a; \phi)v_t)(x))$$

$$(\mathcal{K}(a; \phi)v_t)(x) \coloneqq \int_D \mathscr{k}(x, y, a(x), a(y); \phi)v_t(y) \, dy$$

Removing dependence of a+ $k_{\phi}(x, y, a(x), a(y)) = k_{\phi}(x - y, a(x), a(y))$

→ Convolution operator

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

Fourier transform convolution \rightarrow pointwise product Fourier transforms

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

$$r(x) = \{u * v\}(x) = \int u(x - \tau)v(\tau) d\tau$$

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

$$r(x) = \{u * v\}(x) = \int u(x - \tau)v(\tau) d\tau$$

Theorem

$$r(x) = \{u * v\}(x) = \mathcal{F}^{-1}\{U \cdot V\}$$

Where $U(f) \triangleq \mathcal{F}\{u\}(f); V(f) \triangleq \mathcal{F}\{v\}(f)$

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

Theorem $r(x) = \{u * v\}(x) = \mathcal{F}^{-1}\{U \cdot V\}$ Where $U(f) \triangleq \mathcal{F}\{u\}(f); V(f) \triangleq \mathcal{F}\{v\}(f)$

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

Theorem $r(x) = \{u * v\}(x) = \mathcal{F}^{-1}\{U \cdot V\}$ Where $U(f) \triangleq \mathcal{F}\{u\}(f); V(f) \triangleq \mathcal{F}\{v\}(f)$

$$(\mathcal{F}f)_j(k) = \int_D f_j(x) e^{-2i\pi \langle x,k \rangle} dx$$

$$(\mathcal{F}^{-1}f)_j(x) = \int_D f_j(k) e^{2i\pi \langle x,k\rangle} dk$$

APPLICATION

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

Theorem

$$r(x) = \{u * v\}(x) = \mathcal{F}^{-1}\{U \cdot V\}$$
Where $U(f) \triangleq \mathcal{F}\{u\}(f); V(f) \triangleq \mathcal{F}\{v\}(f)$

J

$$(\mathcal{K}(a; \phi)v_t)(x) = \int_D \&(x - y; \phi)v_t(y) \, dy$$
$$\forall x \in D$$

APPLICATION

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

$$(\mathcal{K}(a; \phi)v_t)(x) = \int_D \&(x - y; \phi)v_t(y) \, dy = \int u(x - \tau)v(\tau) \, d\tau,$$
$$\forall x \in D$$

APPLICATION

Removing dependence of a
+
$$k_{\phi}(x, y) = k_{\phi}(x - y)$$

$$\begin{aligned} (\mathcal{K}(a;\,\phi)v_t)(x) &= \int_D \, \, \&(x-y;\,\phi)v_t(y)\,dy = \,\mathcal{F}^{-1}(\mathcal{F}(\&_\phi)\cdot\mathcal{F}(v_t))(x), \\ &\quad \forall x \in D \end{aligned}$$

FOURIER INTEGRAL OPERATOR

$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathcal{F}(k_{\phi}) \cdot \mathcal{F}(v_t))(x)$

 \rightarrow directly parameterize k_{ϕ} in Fourier space

FOURIER INTEGRAL OPERATOR

$(\mathcal{K}(a;\phi)\nu_t)(x) = \mathcal{F}^{-1}(\mathbf{R}_{\phi} \cdot \mathcal{F}(\nu_t))(x)$
$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathbf{R}_{\phi} \cdot \mathcal{F}(v_t))(x)$

$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(-R_{\phi} - \mathcal{F}(v_t))(x)$

$$(\mathcal{K}(a;\phi)\nu_t)(x) = \mathcal{F}^{-1}(-R_{\phi} - \mathcal{F}(\nu_t))(x)$$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(-R_{\phi} - \mathcal{F}(v_t))(x)$$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathcal{F}(\mathscr{k}_{\phi})\cdot\mathcal{F}(v_t))(x)$$

$$\downarrow$$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(R_{\phi}\cdot\mathcal{F}(v_t))(x)$$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathcal{F}(k_{\phi}) \cdot \mathcal{F}(v_t))(x)$$

$$\downarrow$$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(R_{\phi} \cdot \mathcal{F}(v_t))(x)$$

Assumed k_{ϕ} periodic

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathcal{F}(\mathbf{k}_{\phi}) \cdot \mathcal{F}(v_t))(x)$$

$$\downarrow$$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(R_{\phi} \cdot \mathcal{F}(v_t))(x)$$

$$(\mathcal{F}f)_{j}(k) = \int_{D} f_{j}(x) e^{-2i\pi \langle x,k \rangle} dx$$

$$\downarrow$$
Fourier series expansion
$$\downarrow$$
Work with the discrete modes $\mathscr{K}_{\phi} \in \mathbb{Z}^{d}$

$$(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(R_\phi \cdot \mathcal{F}(v_t))(x)$$

 $(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(-R_{\phi} \cdot \mathcal{F}(v_t))(x)$

 R_{ϕ} Fourier transform of periodic function κ

Finite-dimensional parameterization \rightarrow Truncating at k_{max}

$(\mathcal{H}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathcal{F}(k_{\phi}) \cdot \mathcal{F}(v_t))(x)$

DISCRETE FOURIER TRANSFORM

 $(\mathcal{K}(a;\phi)v_t)(x) = \mathcal{F}^{-1}(\mathcal{F}(\mathscr{k}_{\phi}) \cdot$ $\mathcal{F}(v_t))(x)$ $(\mathcal{K}(a;\phi)v_t)(x)$ $= \mathcal{F}^{-1}(R_{\phi} \cdot \mathcal{F}(v_t))(x)$ **Finite-dimensional** parameterization \rightarrow Truncating at k_{max}

 $R_{\phi} \cdot \mathcal{F}(v_t)$ **Point-wise multiplication** Lying in different dimensions Truncate higher modes of $\mathcal{F}(v_t)$ $(R \cdot (\mathcal{F}_{v_t}))_{k,l} = \sum_{i=1}^{l} R_{k,l,j} (\mathcal{F}_{v_t})_{k,l}$

DISCRETE FOURIER TRANSFORM

$$(\mathcal{F}f)_{j}(k) = \int_{D} f_{j}(x) e^{-2i\pi \langle x,k \rangle} dx$$

$$\downarrow$$

$$(\mathcal{F}f)_{j}[k] = \sum_{x=0}^{n-1} f_{j}[x] e^{-2i\pi \frac{\langle x,k \rangle}{n}}$$
where: $k \in \left[-\frac{k_{max}}{2}, ..., \frac{k_{max}}{2}\right]$

FAST FOURIER TRANSFORM

$$(\hat{\mathcal{F}}f)_{l}(k) = \sum_{x_{1}}^{s_{1}} \dots \sum_{x_{d}}^{s_{d}-1} f_{l}(x_{1}, \dots, x_{d})e^{-2i\pi \sum_{j=1}^{d} x_{j}k_{j}}$$

where: $l = 1, \dots, d_{v}$

INVARIANCE TO DISCRETIZATION

• The Fourier layers are discretization-invariant

INVARIANCE TO DISCRETIZATION

• The Fourier layers are discretization-invariant

Parameters learned in Fourier space \downarrow Projecting on the basis $e^{2\pi i \langle x,k \rangle}$ \rightarrow Physical space \downarrow Well-defined everywhere on \mathbb{R}^d + Consistent error at any resolution

INVARIANCE TO DISCRETIZATION

• Inner multiplication has complexity $O(k_{max})$ • Fourier transforms have complexity $O(nk_{max})$

• Inner multiplication has complexity $O(k_{max})$ • Fourier transforms have complexity $O(nk_{max})$

FFT has complexity O(nlog(n)) \downarrow Uniform discretization is required

NUMERICAL EXPERIMENTS

- 4 Fourier layers
- + ReLU
- + Batch normalization
- 500 epochs
- Learning rate: 0.001, halved every 100 epochs

TESTS

- 1-d Burgers' equation
- 2-d Darcy Flow problem
- 2-d Navier-Stokes equation
- Bayesian Inverse Problem

• Compared against other popular solvers

- Compared against other popular solvers
- Two different Fourier Neural Operators:

FNO-2D learns spatial relation between time steps to predict next step

2DConv

- Compared against other popular solvers
- Two different Fourier Neural Operators:

FNO-2D learns spatial relation between time steps to predict next step

2DConv

- Compared against other popular solvers
- Two different Fourier Neural Operators:

FNO-2D learns spatial relation between time steps to predict next step

FNO-3D learns full space-time relation of whole interval

- Compared against other popular solvers
- Two different Fourier Neural Operators:

FNO-2D learns spatial relation between time steps to predict next step

FNO-3D learns full space-time relation of whole interval

2DConv

▶ 3DConv

• With sufficient data:

• With sufficient data:

FNO-3D

• With sufficient data:

• With sufficient data:

• With insufficient data:

FNO-2D

• With sufficient data:

FNO-3D

• With insufficient data:

FOURIER NEURAL OPERATOR WINS!

KEY FEATURES

Speed and Accuracy:

- Speedy & no accuracy degradation
- Effective in downstream applications

Approximates:

Highly non-linear operators with high frequency modes and slow energy decay

KEY FEATURES

Resolution-Invariant Solution Operator:

 First for Navier-Stokes equations in the turbulent regime

• Maintains same learned network parameters

Capable of zero-shot super-resolution:

Training lower resolution
 → Evaluated higher resolution

Figure 1: top: The architecture of the Fourier layer; bottom: Example flow from Navier-Stokes.

KEY FEATURES

Capable of zero-shot super-resolution:

Training lower resolution
 → Evaluated higher resolution