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Conventional solvers Data-Driven methods

Direct Learning:
Learn trajectories directly from 
data
Better runtime

Challenge:
Classical Neural Networks (NNs) 
still limited by discretization

Solution:
Develop discretization-invariant 
Neural Operators (NOs)
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Key features

• Infinite-Dimensional Operator

• Unified Parameters

→  Discretization-Invariance

→ Solution Transfer

• Data-Driven

NEURAL OPERATORS
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New neural operator
Navier-Stokes equation
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OPERATOR LEARNING

HOW Construct parametric map such that 𝑮𝜽# is as close as possible to 𝑮!. 
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∶ 𝒜 × Θ𝒦 →
ℒ 𝒰 𝐷; ℝ1! , 𝒰 𝐷; ℝ1!

Maps to operators on 𝒰 𝐷; ℝ1!
parameterized by 𝜙 ∈ Θ𝒦

𝒗𝒕"𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

∶ ℝ → ℝ

Non-linear 
activation function
Component-wise 
operations

𝜎 : ℝ1! → ℝ1!
Linear 
transformation
Spatial domain

𝑊 𝓚



𝒗𝒕)𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 , ∀𝒙 ∈ 𝑫

𝒦 𝑎; 𝜙 𝑣! 𝑥 ≔ ,
"
𝓀 𝑥, 𝑦, 𝑎 𝑥 , 𝑎 𝑦 ; 𝜙 𝑣! 𝑦 𝑑𝑦, ∀𝑥 ∈ 𝐷

where𝓀+ ∶ ℝ,(%)%') → ℝ%% ×%% is a NN parameterized by 𝜙 ∈ Θ𝒦 è kernel function

𝓚 𝒂; 𝝓 𝒗𝒕 𝒙𝒗𝒕$𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + , ∀𝒙 ∈ 𝑫

KERNEL INTEGRAL OPERATOR



𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 ≔ ,
𝑫
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Linear integral operator

Neural Operator learns non-linear 
operators:

• Linear integral operators
+

• Non-linear activation functions

𝓚 𝒂; 𝝓 𝒗𝒕 𝒙

≔ M
𝑫
𝓴 𝒙, 𝒚, 𝒂 𝒙 , 𝒂 𝒚 ; 𝝓 𝒗𝒕 𝒚 𝒅𝒚

𝒗𝒕)𝟏 𝒙 ≔ 𝝈 𝑾𝒗𝒕 𝒙 + 𝓚 𝒂; 𝝓 𝒗𝒕 𝒙

NEURAL OPERATOR



Removing dependence of 𝑎 
+ 

 𝓀# 𝑥, 𝑦, 𝑎 𝑥 , 𝑎 𝑦 = 𝓀# x − y, 𝑎 𝑥 , 𝑎 𝑦
𝓚 𝒂; 𝝓 𝒗𝒕 𝒙 ≔
∫𝑫 𝓴 𝒙, 𝒚, 𝒂 𝒙 , 𝒂 𝒚 ; 𝝓 𝒗𝒕 𝒚 𝒅𝒚
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Removing dependence of 𝑎 
+ 
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Fourier transform convolution è pointwise product Fourier transforms

Theorem
Removing	dependence	of	𝑎	

+	
	𝓀+ 𝑥, 𝑦 = 𝓀+ x − y

CONVOLUTION THEOREM
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ℱ𝑓 B 𝑘 = =
C
𝑓B(𝑥)𝑒DEFG H,I 𝑑𝑥 ℱDJ𝑓 B 𝑥 = =

C
𝑓B(𝑘)𝑒EFG H,I 𝑑𝑘

CONVOLUTION THEOREM
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∞ 𝑢 𝑥 − 𝜏 𝑣(𝜏) 𝑑𝜏 ,

∀𝑥 ∈ 𝐷
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𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$( , ℱ(𝑣"))(𝑥)ℱ(𝓀!)

→ 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒 𝓀& 𝑖𝑛 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑝𝑎𝑐𝑒

FOURIER INTEGRAL OPERATOR



𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$( , ℱ(𝑣"))(𝑥)𝑹𝝓

FOURIER INTEGRAL OPERATOR



𝑹𝝓𝒦 𝑎;𝜙 𝑣" 𝑥 = ℱ#$( , ℱ(𝑣"))(𝑥)
𝑅1 Fourier transform of periodic function κ
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Assumed 𝓀w  periodic 
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ℱ𝑓 B 𝑘 = =
C
𝑓B(𝑥)𝑒DEFG H,I 𝑑𝑥

↓
Fourier series expansion

↓
Work with the discrete modes 𝓀w ∈ ℤx
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𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱuv( X ℱ(𝑣!))(𝑥)𝑅w
𝑅+ Fourier transform of periodic function κ
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𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱ"#(ℱ(𝓀$) ,
ℱ(𝑣!))(𝑥)

↓
𝒦 𝑎;𝜙 𝑣! 𝑥
= ℱ"#(𝑅$ , ℱ(𝑣!))(𝑥)
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↓
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𝒦 𝑎;𝜙 𝑣! 𝑥 = ℱuv(ℱ(𝓀w) X
ℱ(𝑣!))(𝑥)

↓
𝒦 𝑎;𝜙 𝑣! 𝑥
= ℱuv(𝑅w X ℱ(𝑣!))(𝑥)

↓
Finite-dimensional

parameterization è Truncating
at 𝑘���

𝑅w X ℱ(𝑣!)
↓

Point-wise	multiplication
+

Lying in different dimensions
↓

Truncate	higher modes of	ℱ 𝑣!
↓

(𝑅 X (ℱ�$)) �,� =s
��v

x%

𝑅�,�,�(ℱ�$)�,�

DISCRETE FOURIER TRANSFORM



ℱ𝑓 � 𝑘 = t
t
𝑓�(𝑥)𝑒u��� �,� 𝑑𝑥

↓
ℱ𝑓 �[𝑘] = s

��"

�uv

𝑓�[𝑥]𝑒
u��� �,�

�
𝑤ℎ𝑒𝑟𝑒: 𝑘 ∈ − P𝑘'()

2 , … , P𝑘'()
2

DISCRETE FOURIER TRANSFORM



Nℱ𝑓 ' 𝑘 =S
("

)"

… S
(#

)#*+

𝑓'(𝑥+, … , 𝑥$)𝑒*,-.
∑$%"
# ($0$

𝑤ℎ𝑒𝑟𝑒: 𝑙 = 1,… , 𝑑1

ℱ𝑓 4 𝑘 = M
5
𝑓4(𝑥)𝑒2,67 8,: 𝑑𝑥

↓

ℱ𝑓 4[𝑘] = �
8;<

=23

𝑓4[𝑥]𝑒
2,67 8,:

=

𝑤ℎ𝑒𝑟𝑒: 𝑘 ∈ − *𝑘!"#
2 ,… , *𝑘!"#

2

FAST FOURIER TRANSFORM



• The Fourier layers are 
discretization-invariant
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• The Fourier layers are 
discretization-invariant

Parameters learned in Fourier space
↓

Projecting on the basis 𝑒ESF⟨H,I⟩ 
→ Physical space

↓

Well-defined everywhere on ℝ1 + Consistent error at any 
resolution

INVARIANCE TO DISCRETIZATION



INVARIANCE TO DISCRETIZATION



• Inner multiplication has complexity O(𝑘567)
• Fourier transforms have complexity O(n𝑘567)

RUNTIME



• Inner multiplication has complexity O(𝑘567)
• Fourier transforms have complexity O(n𝑘567)

FFT has complexity O(𝑛𝑙𝑜𝑔(𝑛)) 
↓

Uniform discretization is required

RUNTIME



NUMERICAL EXPERIMENTS

• 4 Fourier layers

+ ReLU

+ Batch normalization

• 500 epochs

• Learning rate: 0.001, halved every 100 
epochs

THE MODEL

• 1-d Burgers’ equation

• 2-d Darcy Flow problem

• 2-d Navier-Stokes equation

• Bayesian Inverse Problem

TESTS
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SIMULATION

• Compared against other popular solvers

• Two different Fourier Neural Operators:

v FNO-2D learns spatial relation between time steps to predict next step

v FNO-3D learns full space-time relation of whole interval

2DConv

3DConv
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SIMULATION

FNO-2D

• With insufficient data:

• With sufficient data:

FNO-3D



SIMULATION

FOURIER NEURAL OPERATOR WINS!FOURIER NEURAL OPERATOR WINS!



Speed and Accuracy:
• Speedy & no accuracy degradation

• Effective in downstream applications

Approximates:
• Highly non-linear operators with high frequency modes and slow 

energy decay

KEY FEATURES



Resolution-Invariant Solution Operator:
• First for Navier-Stokes equations in the turbulent 

regime

Shared Parameters:
• Maintains same learned network parameters

KEY FEATURES

Capable of zero-shot super-resolution: 
• Training lower resolution è Evaluated higher 

resolution
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