B-PINNs

"to solve linear and nonlinear PDEs
with noisy data for both forward and
Inverse problems”
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The Problem - Form @C a genem[ PDE

N, (u; ) = f, X€ED
B, (u; A) = b, X€ETrl




The Problem - Form @C a genem[ PDE

General differential
operator

N, (u; ) = f, X €D
B, (u; A) = b, x€eTr

Boundary condition
operator



The Problem - Form @C a genem[ PDE

. u(x)
General differential Solution

operator f
/
N, (u; ) = f, X€ED
B, (u; A) = b, X€ETrl
1'

Boundary condition
operator

Vector of
parameters



The Problem - Form cf a genem[ PDE

u(x)
General differential Solu’uon f(),b(x)

N(uxl)— 7 X €D
B(uxl)—b X€ET

Boundary condition
operator

Vector of
parameters



The Problem - Form cf a genem[ PDE

u(x)
General differential  Solution f(x),b(x)

operator f orcmg terms Domain

/
N, (u; ) = f, 7
B, (u; A) = b,

/
Vector of
parameters

Boundary condition
operator

Domain
boundary






‘Dataset D

D =D, UD;UD,
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Dy

Ny(u; 2) = f,
B,(u; 1) = b,

X€ED

XETrl

D, = {(x,50)}"
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‘Dataset D

D =D, UD; UD,

\I\/I

Ne(u; ) = f,
By(u; 1) = b,

X€ED
xX€ETrl

easurements

\
=u(x)+e,  i=12.N,
FO=f(x7)+e,  i=12..N5
p@ = p (xg)) + elgl) i =12..N,




Dataset D
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N,(u; 1) = f,
Bx(u} /1) = b,

X€ED
xX€ETrl

easurements

Hidden real Values

Independent Gaussian
noises with zero mean

i =12..N,
i =1,2..N¢
i =1,2..Np




Nétworé [-th Hidden layer z; € RM

\ ti(x, 0)

Input x € RNx ° \ e e Output il € R .
M'll/{e \
4 6’3’% f = Ne(@ )
\,‘\ “\’%‘)&/ b = B, (ii; 1)
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0/\0 o,






Problem ajo]oroacﬁ

1. Assume Prior distribution
2. Compute Likelihood

3. Compute Posterior Distribution

P(8)
P(D | 0)

P(0|D)
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Problem aj)]oroacﬁ

1.

2.

Assume Prior distribution

Compute Likelihood

. Compute Posterior Distribution

Sample from the Posterior Distribution

. Obtain statistics from samples

P(0)
P(D | 6)
P(0|D)
G

(0D}
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1. Prior Distribution

Gaussian Distributions with zero mean
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2. Likelihood

P(D|0)=P(D,UDsUD,|0)= P(D,|6)P(Ds|0)P(Dy | 6)
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2. Likelihood

P(D|6) = P(D,

P(D, | 6) = P ({(x,(f),ﬂ(i))}

8) = P(Dy | 6)

Ny
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2. Likelihood

P(D|6) = P(D,

P(D, | 6) = P ({(x,(f),ﬂ(i))}

0) = P(D, | 6)
Ny

Ny 1

=1 | 0) - 1_[ 2
(=1 \/Znal(f)
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2. Likelihood

P(D|6) = P(D,

P(D, | 6) = P ({(x,(f),ﬂ(i))}

Computationally

heavy
0) = P(D, | 6)
Ny
Ny
S10)=]
i=1 |
=1 \/Zna
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3. Posterior Distribution

P(8|D) = P(D}J?Z);))(H) fP(DIH)P(H) = likelihood X prior

Bayes’ Theorem

Equal up to a constant
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S amp [ing ﬂyyraacﬁes

HMC and VI



LA

4. ‘Posterior Sam]o[ing ﬂyyroacﬁes

HMC - Hamiltonian Monte Carlo

* Complex probability distributions
* High-dimensional parameter spaces
* Hamiltonian dynamics

* Parameters of interest - positions 7]

* Auxiliary momentum variable r

V1 - Variational ‘Jnfere-nce

Mo X)

Space of M dstrbutions Targe!l dntrBastion

Best vartional solution

Gradent ascont
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HMC - Hamiltonian Monte Carlo

* Complex probability distributions
* High-dimensional parameter spaces

* Hamiltonian dynamics

* Parameters of interest — positions 0

* Auxiliary momentum variable T
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HMC - Setup

P(B|D) =P(D|O) - P(O)
= exp(ln(P(Z) 0) - P(H)))

= exp(In(P(D|9)) + In(P(8)))

= exp (—I(— In(P(D|0)) —In(P(0)))

= exp(—U(0))
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U(0) = (—In(P(D|6)) — In(P(8)))
g_[MC - Setuy P(O|D) =exp(—U(0))

joint distribution 1 :
L
m(0,1)~ exp (—U(H) — 5T M r)
Hamiltonian system:
1
H(,1)=U(0) +§rTM_1r
Hamiltonian dynamics:

dr  0H d0@ oH
dt 00 dt  or

dr = —VU(0)dt do = M~ 'rdt
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HMC - Setup

) ) . d
Hamiltonian dynamics: -
y dtH(e(t),r(t))
dr B oH do B oH e A
it 00 dt _ or = %0 @ T or
dr = =VU(0)dt d0 = M~ 'rdt _ _4r db6 , do dr

dt dt dt dt
=0
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Algorithm 1 Hamiltonian Monte Carlo.

g_[ M C Require: initial states for #°° and time step size t.
for k=1,2...N do

Sample r-1 from N (0, M),
(B9, o) < (O™ rlk-1),
fori=0,1..(L—1) do
Leapfrog integration ri < ri—%$VU (@),
Oii1 < 0;+ 5tM—1r,-,
Fig1 < 1 — £ VU@0i11),
end for
Metropolis-Hastings step:
Sample p from Uniform[O0, 1],
a < min{l,exp(H@,r;) — H@%1 rk-1))}.
. . if p > « then
Metropolis Hastings ok — 0,
else
Ok «— 91,
end if
end for

Calculate {u(x, 0tN+1—1)}’]‘.”_ . as samples of u(x), similarly for other terms.
- 28




1
H,r)=U(0) + irTM‘lr

m, my

. —————— . S—
Min Posterior Probability Max Max Potential Energy Min
7 HMCMomentum (O Starting model @ Rejected sample @ Accepted sample —— MH trajectory --- HMC trajectory
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VI - Variational anerence

N P(OX)

Target distribution

Best variational solution

Space of
P q .

Gradient ascent

q(©|P)
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Function regression

u(x) = sin’(6x), x € [—1,1]

* BNN instead of B-PINN

» 32 training points %" in [-0.8,—0.2] U [0.2, 0.8]
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BNN-GPR

= o 'I"ra.ining data
5 - = Mean

B2 std

— Exact
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BNN-GPR BNN-HMC

o 'I"ra.ining data 3 o 'I"raining data
- = Mean - = Mean
2 std 20 mm2 std
— Exact — Exact

S0
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BNN-HMC

o ﬁMning data
- = Mean

2 std

— Exact

0.5

BNN-VI

2 £

o Training data
- = Mean

B2 std

— Exact

8

0.5
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From here on, B-PINNs
instead of BNNs are used



Physics

!

PDE
PINN
Dropout B-PINN

N\

HMC VI
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1D linear Poisson fcluation

N, (u; 1) = f, X €D
B, (u; A) = b, x €T

!

AoZu=f x€[-0.7,0.7]
u=b x€{-0.7,0.7}



1D linear Poisson fcluation

, _ potential field charge density
differential
operator / /
/wzu = —0.7,0.7]
u=b xE€ {—0.7,0.7}
constant
factor

u(x) = sin3(6x)
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PINN-Dropout 1% AdZu = f

€r, €p € N'(0,0.01%) =

. _2 o
? 0.5 0 0.5 -0.5 0 05 o Training data
| ” | € - = Mean
i 2 ' ] ' 2 std
h ——Exact
1
1
|
? e '
Ef,EbEN(0,0.l ) 3 -0 '
Y| 1)
A
2| 4 |
]
-3 : 2 s
05 0 0.5 e " =
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B-PINN-VI

€r, €p € N'(0,0.01%)

€r, €p € N'(0,0.1%)

=

A02u = f

o Training data
- - Mean

B2 std

—FExact
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B-PINN-HMC

€r, €p € N'(0,0.01%)

€r, €p € NV'(0,0.1%)

u

‘o T\'a.ixliflg data
— = Mean
2 std
Exact

-0.5 0 0.5

‘o Trainiflg data
= = Mean

2 std
— Fxac

-0.5 0.5
\
-0.5 0.5

Ao2u=f

¢ Training data
- — Mean

2 std
—Exact
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- overfitting can occur

PINN

/\

Dropout B-PINN

N\

HMC VI

- accurate and robust, - failing can occur
even for noisy data
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1D nonlinear Poisson fquation

A0Zu=f  x€[-0.7,0.7]
u=b x€{-0.7,0.7}

!

A02u+ ktanh(u) =f  x € [-0.7,0.7]

u==~o x € {—0.7,0.7}



AdZu + ktanh(u) = f

PINN-Dropout 5%

€r, €, € N(0,0.01°)

3 . : : 2 " : : ¢ Training data
-0.5 0 0.5 -0.5 0 0.5 - - Mean

2 , — , 2 2 std

—Exact

er, €5 € NV(0,0.1%)

05 0 e 05 0 0.5



A0Zu + ktanh(u) = f
B-PINN-VI

0
€€, €N(0,0.012)
2 |
2 i i ¢ Training data
-0.5 0 0.5 - = Mean
2 ; , ; 2 std
—Exact
1
< C
er, €5 € NV(0,0.1%) S 5 0 e
= o
3| 1
-3 -2 ;
-0.5 0 0.5 -0.5 0 0.5



A0Zu + ktanh(u) = f

B-PINN-HMC

u f
2— — : 2r— !
O Training data
1 - = Mean
2 std
0 Exact
€€, €N(0,0012) 7|
21
-3 A . .  — ) ) ¢ Training data
-0.5 0 0.5 05 0 05 - - Mean1
2 ' — : 2 2 st
O Training data Exact
1 = = Mean

er, €5 € NV(0,0.1%) 3
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- overfitting can occur

PINN

/\

Dropout B-PINN

N\

HMC VI

- accurate and robust, - failing can occur
even for noisy data
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PINN

/\

Dropout

- overfitting can occur
- noise can have little influence on
(un-)certainty

B-PINN

N\

HMC VI

- accurate and robust, - failing can occur

even for noisy data - unreas’onable
uncertainty at the

boundaries

50



1D nonlinear Poisson Equation
— inverse Joroﬁfem

Ad02u+ ktanh(uw) = f  x € [-0.7,0.7]
u==~n x € {—0.7,0.7}

!

A02u + ktanh(u) = f  x € [-0.7,0.7]
u=bh x € {=0.7,0.7}



(1

1D nonlinear Poisson fqua’m’on
- inverse ]aroﬁfem

B-PINN-HMC

o T‘I'Etillilllg data

- = Mean

2 std
Exasl

u

-0.5

0.5

B-PINN-VI

-0.5

0 0.5

oL

A0Zu + ktanh(u) = f

PINN-Dropout

0.5

€f ~N(0,0.1%), €, ~ N(0,0.1%), €, ~ N(0,0.1%)
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, ,  A0fu+ ktanh(u) = f
1D nonfl‘nem’ Poisson ﬂ':quatlon

— inverse Joroﬁfem

Exact value forkis 0.7

Noise scale /B-PINN-HMC Y B-PINN-VI Y~ Dropout-1% Dropout-5% )
0y Mean | 0705 0.708 0.714 0.669

' Std 5.75 x 1073 401 x10> | 4.38x 1073 2.02 x 1072
01 Mean | 0.665 0.775 0.746 0.633

Std \5.63 x 102 - A.3.58 x 10_2/\ 6.508 x 103 6.45 x 10~3 )

— l

]}g[ [quite accurate, ] [higher error than HMC, [higher error than HMC and VI, ]

reasonable uncertainties reasonable uncertainties unresonable uncertanties
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PINN

/\

Dropout B-PINN

- overfitting can occur /\

- noise can have little influence on

(un-)certainty HMC VI
- accurate and robust, - failing can occur .
even for noisy data - unreasonable uncertainty

at the boundaries
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PINN

Dropout B-PINN

- overfitting can occur /\

- noise can have little influence on

(un-)certainty HMC Vi

- noise can also have unreasonable -

influence on (un-)certainty of the - accurate and robust, - failing can occur .
model even for noisy data - unreasonable uncertainty

at the boundaries
- higher error than HMC
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PINN

/\

Dropout B-PINN

- overfitting can occur /\

- noise can have little influence on

(un-)certainty HMC VI

- noise can also have unreasonable -

influence on (un-)certainty - accurate and robust, - failing can occur .
even for noisy data - unreasonable uncertainty

at the boundaries
- higher error than HMC

Open problems:
- Choice of e.g. prior distribution

- Big data case -



EFFICIENT BAYESIAN PHYSICS INFORMED NEURAL
NETWORKS FOR INVERSE PROBLEMS VIA ENSEMBLE
KALMAN INVERSION

ANDREW PENSONEAULT* AND XUEYU ZHUT

Abstract. Bayesian Physics Informed Neural Networks (B-PINNs) have gained significant at-
tention for inferring physical parameters and learning the forward solutions for problems based on
partial differential equations. However, the overparameterized nature of neural networks poses a
computational challenge for high-dimensional posterior inference. Existing inference approaches,
such as particle-based or variance inference methods, are either computationally expensive for high-
dimensional posterior inference or provide unsatisfactory uncertainty estimates. In this paper, we
present a new efficient inference algorithm for B-PINNs that uses Ensemble Kalman Inversion (EKI)
for high-dimensional inference tasks. By reframing the setup of B-PINNs as a traditional Bayesian
inverse problem, we can take advantage of EKI’s key features: (1) gradient-free, (2) computational
complexity scales linearly with the dimension of the parameter spaces, and (3) rapid convergence
with typically O(100) iterations. We demonstrate the applicability and performance of the pro-
posed method through various types of numerical examples. We find that our proposed method can
achieve inference results with informative uncertainty estimates comparable to Hamiltonian Monte
Carlo (HMC)-based B-PINNs with a much reduced computational cost. These findings suggest that
our proposed approach has great potential for uncertainty quantification in physics-informed machine
learning for practical applications.

2.2. Hamiltonian Monte Carlo (HMC). Next, we briefly review Hamilto-

nian Monte Carlo (HMC), a popular inference algorithm for B-PINNs [48] that serves

as a baseline method for our proposed method. Hamiltonian Monte Carlo (HMC)

[48] Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed
neural networks for forward and inverse PDE problems with noisy data. Journal of Com-
putational Physics, 425:109913, jan 2021.



