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Introduction: 
Operators and Motivating Problems
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• Physical Problems
• May involve complex equations e.g. ODEs, Derivatives, Integrals
• Numerical solutions are inefficient

• Idea: use Neural Networks to solve Physical Problems

• Problem: 
• Not limited to estimating functions
• Different types of structures and inputs

• Goal: 
• Find a Neural Network Architecture suitable for learning operators

What are we trying to solve?
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Goal of DeepONet: Learn operators!

An operator loosely refers to a mapping from a space of functions 
into another space of functions

Operator: function ⟼ function

• Examples include:
• derivative: 𝑥 𝑡 ↦ 𝑥! 𝑡
• integral: 𝑥(𝑡) ↦ ∫𝐾 𝑠, 𝑡 𝑥 𝑠 𝑑𝑠
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Two motivating Problems
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Goal: given a function 𝑢 and a point 𝑦, find

$
!

"
𝑢 𝑥 𝑑𝑥

Example 1: Antiderivative Operator
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Example 2: Pendulum
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• Angle at time 𝑡: 𝑠# 𝑡
• Angular velocity at time 𝑡: 𝑠$ 𝑡  =𝑠#% 𝑡
• External force at time 𝑡: 𝑢(𝑡)

Example 2: Pendulum

𝑠!(𝑡)

𝑠"(𝑡)
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• Angle at time 𝑡: 𝑠# 𝑡
• Angular velocity at time 𝑡: 𝑠$ 𝑡  =𝑠#% 𝑡
• External force at time 𝑡: 𝑢(𝑡)

• Giving the ODE:
𝑠$% 𝑡 = −𝑘 sin 𝑠# 𝑡 + 𝑢(𝑡)

Goal: given 𝒖 and 𝒕, find 𝑠# 𝑡 and 𝑠$ 𝑡

Example 2: Pendulum

𝑠!(𝑡)

𝑠"(𝑡)
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Previous Approaches and 
Related Literature
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Naïve data-oriented approach
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Naïve data-oriented approach
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Naïve data-oriented approach
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Naïve data-oriented approach
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Data and Loss Function

• Input: [𝑢 𝑥# , 𝑢 𝑥$ , … 𝑢 𝑥& , 𝑦]
• With 𝑚 sensors
• And point 𝑦

and

• One data point consists of the triplet (𝑢, 𝑦, 𝐺 𝑢 𝑦 )
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Data and Loss Function

• Constraints:
• Sensor locations are the same all input functions 𝑢
• Not necessarily on a lattice
• An input 𝑢 may appear in multiple data points with different values of 𝑦

• No additional information about Operator or System
• In contrast to regular PINNs

• Loss Function: MSE
• Minimize 𝐺 𝑢 𝑦 − 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑂𝑢𝑡𝑝𝑢𝑡 &
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Approaches for solving Nonlinear Operators 
(Related Literature)

1. Traditional Numerical Methods

• Finite Difference Methods (FDM) and Finite Element Methods (FEM) 
• Widely used 
• Computationally intensive and may struggle with high dimensional problems

• Spectral Methods 
• High accuracy 
• Require complex implementations for nonlinear operators
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Approaches for solving Nonlinear Operators 
(Related Literature)

2. Classical and Recurrent Neural Networks:

• Neural Networks use the universal approximation theorem
• Does not say anything about operators 

• MLPs (Multilayer Perceptrons) 
• LSTM-RNN (Long Short-Term Memory Recurrent Neural Networks)
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Approaches for solving Nonlinear Operators 
(Related Literature)

• (R)MLPs Recurrent Multilayer Perceptrons (Yu, W & Li, X 2005)

• Can approximate ODEs 
• Require extensive data for retraining new inputs

• Continuous-time recurrent multilayer perceptrons for nonlinear system identification
Yu, W., & Li, X. (2005). Continuous-time recurrent multilayer perceptrons for nonlinear system identification. 
Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005., 1636-1641. 
https://consensus.app/papers/continuoustime-recurrent-multilayer-perceptrons-
yu/fa01c3662b095dbeaddff4c869137db9/?utm_source=chatgpt
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Approaches for solving Nonlinear Operators 
(Related Literature)

• Long Short-Term Memory Recurrent Neural Networks (Bassi et al. 
2023)

• Used to learn nonlinear integro-differential equations (IDEs) 
• Can be used for learning operators beyond the integro-differential equations
• Limited since they often require large datasets for training

• Learning nonlinear integral operators via recurrent neural networks and its application in solving integro-
differential equations
Bassi, H., Zhu, Y., Liang, S., Yin, J., Reeves, C. C., Vlček, V., & Yang, C. (2024). Learning nonlinear integral operators 
via recurrent neural networks and its application in solving integro-differential equations. Machine Learning With 
Applications, 15, 100524. https://doi.org/10.1016/j.mlwa.2023.100524
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Theoretical Background and 
DeepONet Architecture
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Theory behind DeepONet
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Universal Approximation Theorem (1989)
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Universal Approximation Theorem (1989)

Let 𝑓 be any continuous function on 0,1 ', 𝜑 any sigmoidal 
activation function and 𝜖 > 0. There exists an ?𝑓 of the form

?𝑓 𝑥 =@
()#

*

𝑤(
$ 𝜑(𝑤(

# +𝑥 + 𝑤(,!
# )

such that for all 𝑥 ∈ 0,1 ', we have 𝑓 𝑥 −	 ?𝑓(𝑥) ≤ 𝜖
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Universal Approximation Theorem for 
Operators (1995)
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Universal Approximation Theorem for 
Operators (1995)
Let 𝐺 be a nonlinear continuous operator, 𝜎 a continuous non-
polynomial function, 𝑋 a Banach space, 𝐾! ⊂ 𝑋 and 𝐾" ⊂ ℝ#. For any 
𝜖 > 0, there exist 𝑛, 𝑝,𝑚 ∈ ℕ, 𝑐$% , 𝜉$&% , 𝜃$% , 𝜁% ∈ ℝ, 𝑤% ∈ ℝ#, 𝑥& ∈ 𝐾!, such 
that

𝐺 𝑢 𝑦 −	:
%'!

(

:
$'!

)

𝑐$% 𝜎(:
&'!

*

𝜉$&%𝑢 𝑥& + 𝜃$%)𝜎(𝑤%𝑦 + 𝜁%) < 𝜖

holds for all 𝑢 ∈ 𝑉 ⊂ 𝐶(𝐾!) and 𝑦 ∈ 𝐾"

branch trunk
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Universal Approximation Theorem for 
Operators (1995)
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Universal Approximation Theorem for 
Operators (1995)
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Generalized Universal Approximation 
Theorem for Operators (2019)

Introduction – Literature – Theory – Performance – Function Dimension – Sensors – Critique 



Generalized Universal Approximation 
Theorem for Operators (2019)
Let 𝑋 be a Banach space, 𝐾# ⊂ 𝑋 and 𝐾$ ⊂ ℝ', 𝑉 ⊂ 𝐶(𝐾#). Let 
𝐺: 𝑉 → 𝐶(𝐾$) be a nonlinear continuous operator. For any 𝜖 > 0, 
there exist 𝑛, 𝑝,𝑚 ∈ ℕ, 𝐠:ℝ& → ℝ*, 𝐟: ℝ' → ℝ*, 𝑥( ∈ 𝐾#, such that

𝐺 𝑢 𝑦 − 𝐠 𝑢 𝑥# , … , 𝑢 𝑥& , 𝐟(𝑦) < 𝜖

holds for all 𝑢 ∈ 𝑉 and 𝑦 ∈ 𝐾$. 𝐠 and 𝐟 can be FNNs, RNNs or CNNs.

branch trunk
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Generalized Universal Approximation 
Theorem for Operators (2019)
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Stacked vs. Unstacked DeepONet
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DeepONet Performance, 
Accuracy and Learning Speed
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Antiderivative Operator

• Branch network input: 𝑢(𝑥#), … , 𝑢(𝑥&)
• Trunk network input: 𝑦

• Output/Target: 𝐺 𝑢 𝑦 = ∫!
" 𝑢 𝑥 𝑑𝑥

Introduction – Literature – Theory – Performance – Function Dimension – Sensors – Critique 



• Branch network input: 𝑠$% 𝑡 = −𝑘 sin 𝑠# 𝑡 + 𝑢(𝑡)	
• Trunk network input: 𝑡

• Output/Target: 𝑠#(𝑡)

Pendulum

𝑠!(𝑡)

𝑠"(𝑡)
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DeepONet Accuracy

• Errors of different network architectures trained to learn the 
antiderivative operator 
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DeepONet Accuracy with
Different Input Function Spaces
• Example of learning the 

Caputo fractional derivative: 

• Functions types:
• Poly-fractonomials
• Legendre polynomials
• Or from Gaussian Random Field
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DeepONet Performance

• Table S4: Computational cost (hours) of training of DeepONet and 
NN baselines
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DeepONet Performance

• Table S5: Computational cost (seconds) of running inference of 
DeepONet, NN baselines and numerical solvers. 
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DeepONet Error Convergence

• MSE for different amounts of training data
• in a nonlinear pendulum problem for k = 1, T = 3
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DeepONet Error Convergence

• small dataset: exponential convergence 
• large dataset: polynomial rates  
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DeepONet Error Convergence
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DeepONet and 
Function Dimension
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Stochastic Operators

How does DeepONet behave with high-dimensional input?
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Stochastic Operators

How does DeepONet behave with high-dimensional input?

Consider the following ODE, representing a population growth 
model:

𝑡 ∈ 0,1 	and	𝜔 ∈ Ω, 𝑦 0 = 1

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔
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Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔

Introduction – Literature – Theory – Performance – Function Dimension – Sensors – Critique 



Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔
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Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔

𝑘 𝑡; 𝜔 	~	𝒢𝒫(0, Cov(𝑡- , 𝑡())
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Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔

𝑘(𝑡#; 𝜔)
⋮

𝑘(𝑡&; 𝜔)
~Norm 0, Cov 𝑡- , 𝑡(
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Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔

𝑘(𝑡#; 𝜔)
⋮

𝑘(𝑡&; 𝜔)
~Norm 0, Cov 𝑡- , 𝑡(
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Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔

𝑘(𝑡#; 𝜔)
⋮

𝑘(𝑡&; 𝜔)
~Norm 0, Cov 𝑡- , 𝑡(

𝑘(𝑡#; 𝜔)
⋮

𝑘(𝑡&; 𝜔)
≈ @

.)#

/

𝜆.
𝑒#(𝑡!)

⋮

𝑒#(𝑡$)
𝜉.(𝜔)
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Stochastic Operators

𝑑
𝑑𝑡
𝑦 𝑡; 𝜔 = 𝑘 𝑡; 𝜔 𝑦 𝑡; 𝜔

𝑘(𝑡#; 𝜔)
⋮

𝑘(𝑡&; 𝜔)
~Norm 0, Cov 𝑡- , 𝑡(

𝑘(𝑡#; 𝜔)
⋮

𝑘(𝑡&; 𝜔)
≈ @

.)#

/

𝜆.
𝑒#(𝑡!)

⋮

𝑒#(𝑡$)
𝜉.(𝜔)

Eigenfunctions of Cov(𝑡% , 𝑡&)

Independent standard 
Gaussian random variables
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Stochastic Operators

Branch network input:
[ 𝜆!𝑒! 𝑡 , … , 𝜆+𝑒+ 𝑡 ] ∈ ℝ+×*

𝜆-𝑒- 𝑡 = 𝜆-[𝑒- 𝑡! , … , 𝑒- 𝑡* ] ∈ ℝ*

Trunk network input:
𝑡, 𝜉!, … , 𝜉+ ∈ ℝ+.!

Target/Output:
𝑦(𝑡; 𝜔)
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Performance and Function Dimension

Test mean squared error of 8.0×10'( ± 3.4×10'(

• DeepONet prediction for a stochastic ODE. 
• DeepONet prediction (symbols) is very close to the reference solution for 

10 different random samples (five in each panel) from 𝑘(𝑥; 𝜔)with 𝑙 = 1.5
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Sensor Constraints and 
our Results
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Choosing different values for 𝑚
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Theorem 3

Consider the following ODE:

𝑑𝑡𝐺(𝑢) 𝑥 = 𝑠! +$
0

1
𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡
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Theorem 3

Consider the following ODE:

𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡 = 𝑢(𝑡)

𝑑𝑡𝐺(𝑢) 𝑥 = 𝑠! +$
0

1
𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡
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Theorem 3

Consider the following ODE:

𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡 = 𝑢(𝑡)

𝑑𝑡𝐺(𝑢) 𝑥 = 𝑠! +$
0

1

𝑢(𝑡)
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Theorem 3

Consider the following ODE:

𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡 = 𝑢(𝑡)

𝑑𝑡𝐺(𝑢) 𝑥 = 𝑠! +$
0

1
𝑢(𝑡)
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Theorem 3

Consider the following ODE:

𝑑𝑡𝐺(𝑢) 𝑥 = 𝑠! +$
0

1
𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡
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Theorem 3 𝑑𝑡𝐺(𝑢) 𝑥 = 𝑠! +$
0

1
𝑔 𝐺(𝑢) 𝑡 , 𝑢 𝑡 , 𝑡

For a given number 𝑚 of sensors, a function space 𝑉 and 
boundaries 𝑎, 𝑏 making the constant 𝜅%(𝑚, 𝑉, 𝑎, 𝑏) less than 𝜀, 
there exist for any 𝑑 ∈ 𝑎, 𝑏 , parameters 𝑊# ∈ ℝ2×& ,𝑊$ ∈ ℝ4×2, 
𝑏# ∈ ℝ& , 𝑏$ ∈ ℝ4such that

𝐺 𝑢 𝑑 −𝑊$𝜎 𝑊# 𝑢 𝑥# , … , 𝑢 𝑥& + + 𝑏# + 𝑏$) $ < 𝜀

holds for all 𝑢 ∈ 𝑉.
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Theorem 3

𝐺 𝑢 𝑑 −
𝑣#
($)

⋮
𝑣4
($)

$

< 𝜀
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Demonstration of our Results
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Choosing different values for 𝑚

𝑙 = 0.01:
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Choosing different values for 𝑚

𝑙 = 0.1:
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𝑙 = 0.025

Introduction – Literature – Theory – Performance – Function Dimension – Sensors – Critique 

𝑚 = 5 𝑚 = 10 𝑚 = 25 𝑚 = 50 𝑚 = 100



𝑙 = 0.2
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𝑚 = 5 𝑚 = 10 𝑚 = 25 𝑚 = 50 𝑚 = 100



Critique and Future Research
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Paper Critique

• Error Convergence is not explained 
• Overfitting potential is not addressed
• Universal approximation theorem does not account for optimization 

and generalization errors
• No proper comparison to numerical solvers

• Requirement for fixed sensor locations for the input functions is 
limiting
• Real-world data may not satisfy the limitations
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Further Research

• Further generalize data constraints 
• Potentially no more requirement for fixed sensor locations

• Operator approximation is much more computationally intensive 
than function approximation

• How does DeepONet perform using CNNs?
• May further improve the accuracy
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Additional Slide: Stacked vs. Unstacked 
DeepONet Peformance



Additional Slide: Seq2Seq Architecture



Additional Slide: DeepONet Sizes for Testing


