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Overview

• Motivation of HFM
• Navier Stokes Equations
• Deep Learning Method
• Examples & Results
• Feedback



Motivation
Fluid Dynamics & “Inverse” Problem
HFM Experiment



Fluid Dynamics

• Kinematic flow of fluid substances: 
• gases (aerodynamics), liquids (hydrodynamics)

• Fluid flow can be described by Navier Stokes Equations

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν % ∇! 𝒖 + 𝑓

• No general solution in 3D! (Millenium prize problem)



Fluid Dynamics

Two main goals:
1. Simulate flows, 

modelling physical 
systems (forward)

2. Inference of flow 
properties in given 
system

Velocity at given points?
Pressure?
Viscosity?



Inverse Problem

• “Forward” simulation possible (1)
• direct numerical simulation of NSE, approximation

• “Backward” solution computationally infeasible and complex (2)
• Ill posed problem (high sensitivity)
• Turbulence and chaos

Initial / Boundary conditions
Domain definition
Fluid properties



Inverse Problem

How do we solve the “backward” problem?

We want to find:

Velocity fields,
Pressure gradient,
Viscosity,
Etc. 

Given
Spatiotemporal data points

i.e. coordinates of particles 
as time series



Inverse Problem

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν % ∇! 𝒖 + 𝑓

We want to find:

Velocity fields,
Pressure gradient,
Viscosity,
Etc. 

Given
Spatiotemporal data points

i.e. coordinates of particles 
as time series

How do we get data?



Hidden Fluid Mechanics Experiment

1. Introduce “passive scalar” into fluid system
• Transported by fluid but no influence on flow
• Smoke, dye

2. Sample concentration of passive scalar at various times, locations
• image velocimetry, MRI
• simulation

Idea: use concentration changes to learn velocity (unobservable)



Intracranial Aneurysm
• Ballooning of blood vessels in the 

brain
• Direct measurements of pressure, 

stress are invasive
• No access to boundary conditions 

(plaque from lipid accumulation)
• Application of HFM



Why is HFM desirable?

• Agnostic to initial/boundary conditions
• Only need coordinates in time
• Zero slip, zero concentration conditions implicitly inferred

• Computationally efficient after training
• Robust against low resolution sampling and noise
• Can infer: velocity, pressure, shear stress, drag, lift, viscosity
• Broad applications: Engineering, Health care, Geophysics…



Navier Stokes Equations
What is Navier Stokes?
How do we utilize knowledge of NSE to construct our neural network?



Foundations

Velocity field
𝒖:ℝ" → ℝ#

𝒖 𝑥, 𝑦, 𝑧, 𝑡 = (𝑢, 𝑣, 𝑤)

Unit volume: 𝑉 = 1

Mass = 𝑉 % 𝜌 = 𝜌 = Density



Incompressible Navier Stokes

Continuity Equation

∇ % 𝒖 = 0

Momentum Equation

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν∇!𝒖 + 𝑓

Conservation of Mass

Newton’s Second 
Law: F=ma



Incompressible Navier Stokes

Continuity Equation

∇ % 𝒖 = 0

∇ % 𝑭 =
𝜕𝐹$
𝜕𝑥

+
𝜕𝐹%
𝜕𝑦

+
𝜕𝐹&
𝜕𝑧

∇=
𝜕
𝜕𝑥
,
𝜕
𝜕𝑦
,
𝜕
𝜕𝑧

→ ∇ % 𝒖 =
𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

+
𝜕𝑤
𝜕𝑧

= 0

Divergence Operator



Incompressible Navier Stokes
Intuition divergence free: inflow = outflow



Incompressible Navier Stokes

How is the Continuity Equation related to Conservation of Mass?

In simple terms: CE = CoM + Gauss Divergence

Change of 
mass of an 

object

Mass leaving
the surface of the 

object

Divergence of mass in 
the object

Conservation 
of Mass

Gauss Divergence 
Theorem

𝑑𝑀
𝑑𝑡



Continuity Equation
Conservation of Mass:

𝑑
𝑑𝑡𝑀𝑎𝑠𝑠 =

𝑑
𝑑𝑡
'𝜌𝑑𝑉 = '

𝑑𝜌
𝑑𝑡 𝑑𝑉 = −'(𝜌𝒖 - 𝑛)𝑑𝑆

Gauss Theorem: ∫ ∇ - 𝐹 𝑑𝑉 = ∫ 𝐹 - 𝑛 𝑑𝑆

' ∇ - 𝜌𝒖 𝑑𝑉 = ' 𝜌𝒖 - 𝑛 𝑑𝑆 = −'
𝑑𝜌
𝑑𝑡
𝑑𝑉

𝜕𝜌
𝜕𝑡
+ ∇ - (𝜌𝒖) = 0

Volume integral Surface integral



Continuity Equation
Incompressible ó density is constant

Compressible
𝜕𝜌
𝜕𝑡
+ ∇ % (𝜌𝒖) = 0

Incompressible
𝜕𝜌
𝜕𝑡

= 0 ⇒	∇ % 𝒖 = 0

Constant= 0



Incompressible Navier Stokes

Continuity Equation

∇ % 𝒖 = 0

Momentum Equation

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν % ∇!𝒖 + 𝑓

Other forces

Acceleration

Pressure forces

Viscous forces

Conservation of Mass

Newton’s Second 
Law: F=ma

Divergence Theorem



Incompressible Navier Stokes

Momentum Equation

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν % ∇!𝒖 + 𝑓

• Acceleration of infinitesimal volume (particle) at (x, y, z, t) 
• Acceleration wrt. time & position
• Chain rule

Newton’s Second 
Law: F=ma

Multiply to obtain m*a on LHS



Incompressible Navier Stokes

𝑑𝒖(𝑥, 𝑦, 𝑧, 𝑡)
𝑑𝑡

=
𝜕𝒖
𝜕𝑡
𝑑𝑡
𝑑𝑡
+
𝜕𝒖
𝜕𝑥

𝑑𝑥
𝑑𝑡
+
𝜕𝒖
𝜕𝑦

𝑑𝑦
𝑑𝑡
+
𝜕𝒖
𝜕𝑧
𝑑𝑧
𝑑𝑡

𝑑𝒖
𝑑𝑡

=
𝜕𝒖
𝜕𝑡
+
𝜕𝒖
𝜕𝑥

𝑢 +
𝜕𝒖
𝜕𝑦

𝑣 +
𝜕𝒖
𝜕𝑧
𝑤

𝑑𝒖
𝑑𝑡

=
𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇𝒖



Incompressible Navier Stokes

Momentum Equation

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν % ∇!𝒖 + 𝑓

• ν = $
%

 kinematic viscosity coefficient

• Shear stress from Laplacian operator:

∇!𝒖 = '!𝒖
'$!

+ '!𝒖
'%!

+ '!𝒖
'&!

= ∇ % ∇𝒖 

Newton’s Second 
Law: F=ma



Incompressible Navier Stokes

Continuity Equation

∇ % 𝒖 = 0

Momentum Equation

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −

∇𝑃
𝜌
+ ν % ∇!𝒖 + 𝑓

Acceleration

Pressure forces

Viscous forces

Other forces

Conservation of Mass

Newton’s Second 
Law: F=ma

Divergence Theorem



Non-dimensionalized Navier Stokes

• Scale the momentum equation to remove physical units
• Analogous to vector normalization

𝜕𝒖
𝜕𝑡
+ 𝒖 % ∇ 𝒖 = −∇𝑃 +

1
𝑅𝑒

∇!𝒖 + 𝑓

Reynolds number:   𝑅𝑒 = inertia
viscosity  (fluid particle)



Method
Neural Network with Regularization based on NSE
Model Architecture & Training



Recall: Hidden Fluid Mechanics Experiment

1. Introduce “passive scalar” into fluid system

2. Sample concentration of passive scalar 
at various times, locations

This means our training data will map from (𝑡, 𝑥, 𝑦, 𝑧) to concentration 𝑐
But 𝑐 is not part of Navier-Stokes!
We need something to link it back to other variables in Navier-Stokes…



Transport Equation

𝜕𝑐
𝜕𝑡
= ∇ ⋅ (−𝒖𝑐 + 𝐷∇𝑐)

Advection Diffusion

Diffusion coefficient

Divergence operator reminder: ∇ ' 𝑢, 𝑣, 𝑤 ! =
𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

+
𝜕𝑤
𝜕𝑧

https://www.thoughtco.com/definition-of-diffusion-604430https://www.istockphoto.com/de/foto/holzstamm-
der-auf-dem-flusswasser-schwimmt-gm1214359156-
353280776



Transport Equation

𝜕𝑐
𝜕𝑡
= ∇ ⋅ (−𝒖𝑐 + 𝐷∇𝑐)

 
∇ ⋅ 𝒖𝑐  can be simplified with Navier Stokes!

Advection Diffusion

Diffusion coefficient



Simplifying Transport Equation

∇ ⋅ 𝒖𝑐

= ' )*
' $

 + ' +*
' %

 + ' ,*
' &

= 𝑢$𝑐 + 𝑢𝑐$ + 𝑣%𝑐 + 𝑣𝑐% + 𝑤&𝑐 + 𝑤𝑐&

= 𝑐 𝑢$ + 𝑣% +𝑤& + 𝑢𝑐$ + 𝑣𝑐% +𝑤𝑐&

= 𝒖	⋅ ∇𝑐

= ∇ ⋅ 𝒖 = 𝟎 due to 
Incompressible Navier Stokes 
(continuity eq)

𝒖	 ⋅ ∇𝑐

𝒖 ≔ 𝑢, 𝑣, 𝑤 𝑻



Simplified Transport Equation

𝜕𝑐
𝜕𝑡
= − 𝒖	 ⋅ ∇𝑐 + 𝐷∇!𝑐

Advection Diffusion



Non-dimensionalized Transport Eq.

𝑐2 = −( 𝑢 𝑐$ + 𝑣 𝑐% + 𝑤 𝑐&) +
1
𝑃𝑒𝑐

𝑐$$ + 𝑐%% + 𝑐&&

High Péclet number: Advection dominates 
Low Péclet number: Diffusion dominates

Advection Diffusion



Model Introduction

Physics-uninformed NN

NN: (𝑡, 𝑥, 𝑦, 𝑧) −> (𝑐, 𝑢, 𝑣, 𝑤, 𝑝)

Physics-informed regularization

How should 𝑐, 𝑢, 𝑣, 𝑤, 𝑝 behave,
According to Navier-Stokes & Transport equations?



From Navier Stokes to Regularization Terms

Continuity Equation:
∇ % 𝒖 = 0

Equivalent regularization:

Note that 𝒖 ≔ 𝑢, 𝑣, 𝑤 𝑻!



From Navier Stokes to Regularization Terms

Momentum Equation (Non-dimensionalized with 𝑓 set to 0):

𝜕𝒖
𝜕𝑡

+ 𝒖 % ∇ 𝒖 = −∇𝑃 +
1
𝑅𝑒

∇!𝒖

Let’s bring everything to LHS.

𝒖 ≔ 𝑢, 𝑣, 𝑤 𝑻



From Navier Stokes to Regularization Terms

Momentum Equation (Non-dimensionalized with 𝑓 set to 0):

𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇ 𝒖 + ∇𝑃 −
1
𝑅𝑒

∇!𝒖 = 𝟎

Equivalent regularization:

Laplacian operator 
(scalar -> scalar)
Applied component-wise to 𝒖 

= 𝑢 "
"#
+ 𝑣 "

"$
+ 𝑤 "

"%

𝒖	 ≔ 𝑢, 𝑣, 𝑤 𝑻

Linear differential operator 



From Transport Eq. to Regularization Terms

Transport equation (non-dimensionalized):

𝑐2 = −( 𝑢 𝑐$ + 𝑣 𝑐% + 𝑤 𝑐&) +
1
𝑃𝑒𝑐

𝑐$$ + 𝑐%% + 𝑐&&

Equivalent regularization:



Full Model Overview

Navier-Stokes

Transport Equation

Physics-uninformed NN Physics-informed regularization

Automatic differentiation

NN: (𝑡, 𝑥, 𝑦, 𝑧) −> (𝑐, 𝑢, 𝑣, 𝑤, 𝑝)



Loss Function

1
𝑁
R
<=>

?

𝑐 𝑡< , 𝑥< , 𝑦< , 𝑧< − 𝑐< !

+

R
@=>

A
1
𝑀
R
B=>

C

( |𝑒ᵢ(𝑡ᵐ, 𝑥ᵐ, 𝑦ᵐ, 𝑧ᵐ)|² )

MSE for Physics-
uninformed NN

Physics-informed 
regularization



Experiment Results
Case studies: External vs. Internal flow in 2D/3D
Comparison of Learned Solution vs Ground truth



External Flow

• 2D flow past a cylinder (simulation)
• Passive scalar injected from left inlet
• Sample area for training data can be 

arbitrary







Learning Reynold & Péclet numbers

• In both experiments, 𝑅𝑒 and 𝑃𝑒𝑐 are prescribed (both set to 100)
• But we can also modify the model slightly to learn them



Internal Flow: Intracranial Aneurysm (ICA)
• No boundary conditions except for 

at outlet (velocity & concentration)
• Use only sac for training

Simulation domain Training domain
Visualized blood flow paths within the aneurysm



Intracranial Aneurysm (ICA)
• Wall shear stress



Feedback
What are some problems with the paper?
What was done well?



Our takeaways
Negative:
• Only simulation data
• Overfitting / Generalizability?
• Short overview of NS would have 

been nice
• “Agnostic to initial/boundary 

conditions” shown but not 
explained

Positive:
• Easy to follow
• Good separation of main paper 

and additional material
• Descriptive diagrams
• Interesting experiments (ICA)



Thank you for listening!
We will gladly answer any further questions



Navier-Stokes Equations

𝜕𝒖
𝜕𝑡

+ 𝒖 % ∇ 𝒖 = −∇𝑃 +
1
𝑅𝑒

∇!𝒖

∇ % 𝒖 = 0

Transport Equation

𝑐& = −( 𝑢 𝑐# + 𝑣 𝑐$ + 𝑤 𝑐%) +
1
𝑃𝑒𝑐 𝑐## + 𝑐$$ + 𝑐%%

Reynolds number:   𝑅𝑒 = inertia
viscosity  (fluid particle)

Péclet number:  𝑃𝑒𝑐 = advection
diffusion   (transported particle)

Hidden Fluid Mechanics



Notation

𝒖, 𝒖 velocity (vector)

𝑢, 𝑣, 𝑤 velocity (scalar)

𝑢# 𝜕𝑢/𝜕𝑥
𝑡 time

𝜌 density

ν viscosity

𝑃 pressure

𝑉 volume

∇ gradient

∇ ' divergence, e.g. ∇ ' 𝑢, 𝑣, 𝑤 ! = 𝜕𝑢/𝜕𝑥 + 𝜕𝑣/𝜕𝑦 + 𝜕𝑤/𝜕𝑧
∇' laplacian, e.g. ∇'𝑐 = 𝑐## + 𝑐$$ + 𝑐%%


