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• An agent selects actions to maximize long-term reward

• A wide spectrum of applications
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Reinforcement Learning 

Games Self-driving vehicle Chatbot



Reinforcement Learning 

• Markov decision processes : describe the environment for RL: 

◦ State (𝑆): a (finite) set of states

◦ Action (𝒜): a (finite) set of actions

◦ Probability transition matrix (𝑃𝑠𝑠′
𝑎 ):   𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), unknown

◦ Reward function (𝑅):   𝑅 𝑠, 𝑎 = 𝐸[𝑅𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

◦ Discount factor (𝛾): 𝛾 ∈ [0,1]

• Policy (𝝅): the agent’s behavior strategy, 𝑎 ∼ 𝜋(⋅ |𝑠)
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𝑠0 ∼ 𝜇(𝑠) 𝑠1 ∼ 𝑝(⋅ |𝑠0, 𝑎0)𝑎0

𝑅0 𝑅1

𝑎1 𝑠2 ∼ 𝑝(⋅ |𝑠1, 𝑎1)



Reinforcement Learning 

• Two fundamental tasks in RL:
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Policy Evaluation

Policy Optimization

Bellman Equation

Bellman Optimality 
Equation 



Reinforcement Learning

Challenges of solving Bellman equations:

• Unknown MDP: 𝑃 𝑠′|𝑠, 𝑎 , 𝑅(𝑠, 𝑎) are unknown 

◦ We only observe samples 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 𝑘=1
𝑛 from some behavior policy

◦ Resort to bootstrapping or stochastic approximation schemes

◦ Example: standard Q-learning

• Large State and Action Spaces: 

◦ 𝑆, 𝒜 can be extremely large, even infinite

◦ Resort to function approximation techniques

◦ Classical algorithms can diverge when function approximation is used. 
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The
Deadly Triad

Function Approximation



The Interplay of Dynamical Systems and Reinforcement Learning 

• RL is all about learning unknown dynamical 
systems.
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Action

State 
rewards

Unknown System

Agent

𝑄𝑘+1 = ෠𝐹𝑄𝑘

𝑘 ← 𝑘 + 1

Stochastic dynamic programming

• Many RL algorithms can be viewed as 
discrete dynamical systems.



Recipe for Analyzing Classical RL Algorithms 
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Stochastic Approximation
𝑑

𝑑𝑡
𝑥𝑡 = 𝑓 𝑥𝑡

Dynamical Systems

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑓 𝑥𝑘 + 𝜖𝑘+1)

Asymptotic Convergence 

• TD-learning with LFA
[Tsitsiklis & Van Roy, 1997]

• Double TD-learning with LFA
[Lee & He, 2019]

• Synchronous Q-learning
[Borkar & Meyn, 2000]

• Asynchronous Q-learning
[Jaakkola et al.,1994][Tsitsiklis, 1994]

• Q-learning with LFA
[Melo, Meyn, & Ribeiro, 2008]

• Greedy-GQ algorithm
[Maei et al., 2010]

Finite-time 
Convergence

• TD-learning with LFA
[Srikant & Ying, 2019]
[Dalal et al., 2018] [Bhandari et al., 2019]  
[Lakshminarayanan & Szepesvári, 2018]

• Synchronous Q-learning
[Wainwright, 2019]

• Asynchronous Q-learning
[Szepesvári, 1998][Even-Dar & Mansour, 2003]
[Qu & Wierman, 2020] [Li et al., 2020]

• Q-learning with LFA
[Chen et al., 2019] [Wang & Giannakis,2020]

Tight Error Bound

• TD-learning with LFA
[Hu & Syed, 2019]
[Devraj & Meyn, 2017]
[Chen et al., 2020]

• Q-learning & Relative Q-learning
[Devraj & Meyn, 2020]

[Lee & He, 2020]

[Lee & He, 2020]

[Weng et al., 2020]

• Double Q-learning 
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Recipe for Analyzing Modern Optimization-based RL Algorithms

(Non-)Convex Optimization

𝑒. 𝑔. , GD, SGD, MD, SVRG, Primal-Dual, etc. 

First-Order Methods

min
𝑥

𝐿 𝑥 𝑜𝑟 min
𝑥

max
𝑦

𝐿(𝑥, 𝑦)

Asymptotic 
Convergence 

Policy Evaluation 
• Residual gradient algorithm 
• GTD, GTD-2, and its cousins
• SVRG/SAGA  
• ……

Policy Optimization 
• Policy Gradient 
• TRPO 
• PPO
• SPD-RL  
• SBEED
• ……

Finite-time 
Convergence

Lower Bound

IEEE Magazine Article : Optimization for Reinforcement Learning: from a single agent to cooperative agents.  2020.  (with Lee, Kamal, and Cevher)



Dynamical Systems Perspectives for RL 

• Opportunities:

◦ Unification

◦ No need for objective/gradients/regularizations

◦ Characterization of exact behavior 

◦ Theoretical insights and practical guidelines  

• Challenges: 

◦ Possibly nonlinear systems (e.g., even tabular Q-learning)  

◦ Hard to cope with nonlinear function approximation 
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Question: How to systematically analyze the nonlinear dynamics of the large family of Q-learning algorithms? 



A Quick Tour of the O.D.E. Analysis
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The ODE Method
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The ODE Method: Key Idea

𝑋𝑘+1 = 𝑋𝑘 + 𝛼𝑘(𝑓 𝑋𝑘 + 𝜖𝑘+1)

Dynamical system: 
𝑑

𝑑𝑡
𝑥𝑡 = 𝑓 𝑥𝑡

Asymptotic stability

Dynamical system, 
𝑑

𝑑𝑡
𝑥𝑡 = 𝑓 𝑥𝑡 , is globally asymptotically stable if 𝑥𝑡 → 𝑥∗ for any 𝑥0.



Under the following conditions:

a) Global Lipschitz continuity of the mapping 𝑓

b) Robbins-Monro stepsize: ∑𝛼𝑘 = ∞,∑𝛼𝑘
2 < ∞

c) Bounded noise of martingale difference: 𝐸 𝜖𝑘+1
2 𝐺𝑘 ≤ 𝐶0 1 + 𝑋𝑘

2 , ∀𝑘 ≥ 0

d) Asymptotic stability of the limiting ODE ∶ ሶ𝑥𝑡 = 𝑓∞ 𝑥𝑡 ≔ lim
𝑐→∞

𝑓 𝑐𝑥

𝑐

e) Global asymptotic stability of the original ODE: ሶ𝑥𝑡 = 𝑓 𝑥𝑡

we have 𝑋𝑘 → 𝑥∗ as 𝑘 → ∞.

The ODE Method: Borkar and Meyn Theorem 
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SA:   𝑋𝑘+1 = 𝑋𝑘 + 𝛼𝑘(𝑓 𝑋𝑘 + 𝜖𝑘+1)

[Borkar and Meyn Theorem, 2000]



Stability of Linear Systems and Applications in TD-learning 

• Linear System:

• TD-learning with Linear Function Approximation

• Applications to other TD-learning  variants: 

◦ TD(0), TD(𝜆) [Tsitsiklis & Van Roy, 1997]

◦ GTD, TDC [Sutton et al., 2009]

◦ A-TD, D-TD [Lee and He, 2019]

* A matrix is Hurwitz if all eigenvalues have strictly negative real parts.

The origin is an asymptotically stable 
equilibrium point if and only if 𝐴 is Hurwitz. 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝜙 𝑠𝑘 [𝑟 𝑠𝑘 , 𝑎𝑘 + 𝛾𝜙 𝑠𝑘+1
𝑇𝜃𝑘 − 𝜙 𝑠𝑘

𝑇𝜃𝑘]

𝑑

𝑑𝑡
𝑥𝑡 = 𝐴𝑥𝑡
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𝑑

𝑑𝑡
𝜃𝑡 − 𝜃∗ = 𝐴 𝜃𝑡 − 𝜃∗ , 𝐴 = Φ𝑇𝐷 𝛾𝑃𝜋 − 𝐼 Φ is 𝐻𝑢𝑟𝑤𝑖𝑡𝑧



Stability of Nonlinear Systems and Applications in Q-learning 

• Nonlinear System:

• Applications:  

◦ Tabular Q-learning [Borkar & Meyn, 2000]

◦ Q-learning with linear function approximation [Melo et al., 2008] [Wang & Giannakis, 2020]
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𝑑

𝑑𝑡
𝑥𝑡 = 𝑓(𝑥𝑡)

The origin is unique, globally asymptotically stable if  there exists a twice 
differentiable Lyapunov function 𝑉(𝑥) such that

𝑘1 𝑥 𝛼 ≤ 𝑉 𝑥 ≤ 𝑘2 𝑥 𝛼

𝑑𝑉

𝑑𝑥
𝑓 𝑥 ≤ −𝑘3 𝑥 𝛼

for some positive constants 𝛼, 𝑘1, 𝑘2, 𝑘3.

[Khalil, 2002]



Stability of Linear Switching Systems
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• Linear switching system:
𝑑

𝑑𝑡
𝑥𝑡 = 𝐴𝜎𝑡𝑥𝑡

◦ coupling between continuous dynamics and discrete events (switching)

◦ 𝜎𝑡: switching signal ∈ {1,2,⋯ ,𝑀}; {𝐴1, … , 𝐴𝑀} subsystem matrices

◦ 𝜎𝑡 = 𝜎 𝑥𝑡 : state-feedback switching signal

The origin is the unique globally asymptotically stable equilibrium point if and only if 
there exists a full column rank matrix 𝐿 and a family of NRD matrices { ҧ𝐴1, … , ҧ𝐴𝑀}
such that 

𝐿𝐴𝜎 = ҧ𝐴𝜎𝐿, ∀𝜎 ∈ {1,2, … ,𝑀}. 

[Lin and Antsaklis, 2009]

Negative Row Dominant Diagonal (NRD) matrix A: 𝑎𝑖𝑖+∑𝑗≠𝑖 |𝑎𝑖𝑗| < 0, ∀𝑖



Switching System Perspective of Q-learning Algorithms
with Donghwan Lee (2020)
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• Q-learning (Watkins, 1992)

◦ Use a single trajectory of samples 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 from behavior policy 

◦ If every state-action pair is visited infinitely often, 𝑄𝑘→ 𝑄∗with probability one

• Convergence Analysis  

◦ The original proof [Watkins and Dayan, 1992]

◦ Stochastic-approximation-based approach [Jaakkola et al., 1994] [Tsitsiklis, 1994] 

◦ Finite-time analysis:  [Szepesvári, 1998][Even-Dar & Mansour, 2003]

◦ Recent work: [Qu & Wierman, 2020] [Li et al., 2020]

(Asynchronous) Q-learning

𝑄𝑘+1 𝑠𝑘 , 𝑎𝑘 = 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 + α𝑘(𝑟(𝑠𝑘 , 𝑎𝑘) + 𝛾max
𝑎′

𝑄𝑘 𝑠𝑘+1, 𝑎′ − 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 )
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• Q-learning

• Dynamical system

Switching System Model of Q-Learning

𝑑

𝑑𝑡
𝑄𝑡 − 𝑄∗ = 𝛾𝐷𝑃𝛱𝜋𝑄𝑡

− 𝐷 𝑄𝑡 − 𝑄∗ + 𝛾𝐷𝑃(𝛱𝜋𝑄𝑡
− 𝛱𝜋∗)𝑄

∗

◦ Greedy policy: 𝜋𝑄𝑡(𝑠) = argmax𝑎𝑄𝑡 𝑠, 𝑎

◦ Diagonal elements of 𝐷 : state-action distribution

◦ 𝑃 =
⋮
𝑃𝑎
⋮

, 𝑃𝑎=transition probability matrix for taking action 𝑎

◦ 𝛱𝜋 ≔ ⋯ Γ𝑎 ⋯ , Γ𝑎 𝑠,𝑎′ = 1 𝑖𝑓 𝜋 𝑠 = 𝑎′ and 0 otherwise

𝑄𝑘+1 𝑠𝑘 , 𝑎𝑘 = 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 + α𝑘(𝑟(𝑠𝑘 , 𝑎𝑘) + 𝛾max
𝑎′

𝑄𝑘 𝑠𝑘+1, 𝑎′ − 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 )
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• Q-learning

• Dynamical system

Switching System Model of Q-Learning

𝑑

𝑑𝑡
𝑥𝑡 = 𝐴𝜎(𝑥𝑡)𝑥𝑡 + 𝑏𝜎(𝑥𝑡)

◦ 𝑥𝑡 = 𝑄𝑡 − 𝑄∗, 𝜎 𝑥𝑡 = 𝜓 𝜋𝑄𝑡 , 𝜋𝑄𝑡(𝑠) = argmax𝑎𝑄𝑡 𝑠, 𝑎

◦ 𝜓: deterministic policy → integer

Affine switching system

𝑑

𝑑𝑡
𝑄𝑡 − 𝑄∗ = 𝛾𝐷𝑃𝛱𝜋𝑄𝑡

− 𝐷 𝑄𝑡 − 𝑄∗ + 𝛾𝐷𝑃(𝛱𝜋𝑄𝑡
− 𝛱𝜋∗)𝑄

∗

𝑄𝑘+1 𝑠𝑘 , 𝑎𝑘 = 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 + α𝑘(𝑟(𝑠𝑘 , 𝑎𝑘) + 𝛾max
𝑎′

𝑄𝑘 𝑠𝑘+1, 𝑎′ − 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 )

20



• Upper comparison system (linear switching system)

• Original affine switching system

• Lower comparison system (linear system)

Stability Analysis: Upper and Lower Comparison Systems

𝑑

𝑑𝑡
𝑄𝑡 − 𝑄∗ = 𝛾𝐷𝑃𝛱𝜋𝑄𝑡

− 𝐷 𝑄𝑡 − 𝑄∗ + 𝛾𝐷𝑃(𝛱𝜋𝑄𝑡
− 𝛱𝜋∗)𝑄

∗

𝑑

𝑑𝑡
𝑄𝑡 − 𝑄∗ = 𝛾𝐷𝑃𝛱𝜋𝑄𝑡

− 𝐷 𝑄𝑡 − 𝑄∗

≥

𝑑

𝑑𝑡
𝑄𝑡 − 𝑄∗ = 𝛾𝐷𝑃𝛱𝜋𝑄∗ − 𝐷 𝑄𝑡 − 𝑄∗

≥

21



Stability Analysis: Vector Comparison Principle 

𝑑

𝑑𝑡
𝑥𝑡 = 𝑓(𝑥𝑡)

Linear system
Easy analysis

≤
𝑑

𝑑𝑡
𝑥𝑡 = 𝑓 𝑥𝑡 ≤

𝑑

𝑑𝑡
𝑥𝑡 = 𝑓 𝑥𝑡

Linear switching system
Easy analysis

𝑡→
∞

𝑡→
∞

𝑥𝑡 → 0𝑥𝑡 → 0

𝑡

𝑥𝑡

𝑥𝑡 𝑥𝑡

𝐴 𝜎 𝑖𝑠 𝑁𝑅𝐷

If ҧ𝑓 and 𝑓 are globally Lipschitz continuous, ҧ𝑓 is quasi-
monotone increasing, then 

𝑓 ≤ ҧ𝑓, 𝑥0 ≤ ҧ𝑥0 ⇒ 𝑥𝑡 ≤ ҧ𝑥𝑡, ∀𝑡 ≥ 0.

[Vector Comparison Principle]

𝑥𝑡 → 0
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Stability and Convergence 

• Immediate result: 

◦ 𝑄𝑡 − 𝑄∗ ≤ 𝑄𝑡 − 𝑄∗ ≤ 𝑄𝑡 − 𝑄∗, ∀𝑡 ≥ 0

◦ The origin is the unique globally asymptotically stable equilibrium point  of the three systems. 

◦ Under the Robbins-Monro stepsize, 𝑄𝑘 → 𝑄∗, as 𝑘 → ∞.

• Extensions:

◦ Target-based Q-learning algorithms

◦ Q-learning with linear function approximation 
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Target-based Q-learning 

Averaging Q-learning

Double Q-learning 
(Hasselt, 2010)

Periodic Q-learning 

Standard Q-learning 
(Watkins & Dayan 1992)

Target-based Q-learning

Lee and H., “Target-based temporal difference learning,” ICML, 2019. 
Lee and H., “Periodic Q-learning,” L4DC, 2020. 

Averaging TD learning (A-TD)

Double TD learning (D-TD)

Periodic TD learning (P-TD)

Classical TD learning 
(Sutton, 1988)

Target-based TD learning



Averaging Q-learning 

• Algorithm:

◦ This can also be formulated as a switching system. 

◦ Similarly, we can easily show that for any 𝛿 > 0, 𝑄𝑘
𝐴→ 𝑄∗ and 𝑄𝑘

𝐵 → 𝑄∗, as 𝑘 → ∞.

𝑄𝑘+1
𝐴 𝑠𝑘 , 𝑎𝑘 = 𝑄𝑘

𝐴 𝑠𝑘 , 𝑎𝑘 + α𝑘(𝑟(𝑠𝑘 , 𝑎𝑘) + 𝛾max
𝑎′

𝑄𝑘
𝐵 𝑠𝑘+1, 𝑎

′ − 𝑄𝑘
𝐴 𝑠𝑘 , 𝑎𝑘 )

𝑄𝑘+1
𝐵 (𝑠𝑘 , 𝑎𝑘) = 𝑄𝑘

𝐵 𝑠𝑘 , 𝑎𝑘 + 𝛼𝑘𝛿(𝑄𝑘
𝐴 𝑠𝑘 , 𝑎𝑘 − 𝑄𝑘

𝐵 𝑠𝑘 , 𝑎𝑘 )
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Q-learning with Linear Function Approximation 

• Algorithm:

• Switching system:

• New sufficient condition: 

◦ Under the above condition, we can easily show that for 𝜃𝑘 → 𝜃∗ as 𝑘 → ∞.

◦ Less conservative than the Melo’s condition. 

𝜃𝑘+1 = 𝜃𝑘 + α𝑘𝜙 𝑠𝑘 , 𝑎𝑘 [𝑟 𝑠𝑘 , 𝑎𝑘 + 𝛾max
𝑎′

Φ𝜃𝑘 𝑠𝑘+1, 𝑎
′ − Φ𝜃𝑘 𝑠𝑘 , 𝑎𝑘 ]

𝑑

𝑑𝑡
𝜃𝑡 = 𝛾Φ𝑇𝐷𝑃Π𝜋 𝜃𝑡 Φ−Φ𝑇𝐷Φ 𝜃𝑡 +Φ𝑇𝐷𝑅

−𝜙𝑖
𝑇𝐷𝜙𝑖 + 𝛾𝜙𝑖

𝑇𝐷𝑃Π𝜋∑𝜙𝑗 < 0, ∀ admissible 𝜋
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The Roadmap

Q-Learning

Nonlinear ODE

Affine switching system

Convergence

Asymptotic stability of upper and 
lower comparison systems

𝑄𝑘+1(𝑠, 𝑎) = 𝑄𝑘(𝑠, 𝑎) − α𝑘(𝑟 + 𝛾max
𝑎′

𝑄𝑘 𝑠′, 𝑎′ − 𝑄𝑘 𝑠, 𝑎 )

𝑑

𝑑𝑡
𝑄𝑡 − 𝑄∗ = 𝛾𝐷𝑃𝛱𝜋𝑄𝑡

− 𝐷 𝑄𝑡 − 𝑄∗ + 𝛾𝐷𝑃(𝛱𝜋𝑄𝑡
−𝛱𝜋∗)𝑄

∗

𝑑

𝑑𝑡
𝑥𝑡 = 𝐴𝜎(𝑥𝑡)𝑥𝑡 + 𝑏𝜎(𝑥𝑡)

27

𝑡

𝑥𝑡

𝑥𝑡 𝑥𝑡

Comparison principle



Highlights

• First connection between reinforcement learning  and switching systems 

• Simple and intuitive analysis of asynchronous Q-learning based on existing control theory

• Unified framework for analyzing the convergence of a family of Q-learning algorithms

• Tight conditions and weak assumptions

• Future Work 

◦ Continuous-time vs. discrete-time dynamics of switching systems 

◦ Finite-time convergence rate and tight error bounds 

◦ Other Q-learning variants: deep Q-learning 

◦ Efficient and robust RL algorithms from the control perspective 

28



Is Double Q-learning Provably More Efficient than Q-learning?
with Weng, Gupta, and Srikant (2020)
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Double Q-learning

30

• Q-learning with LFA:

• Double Q-learning with LFA:

𝜃𝑘+1
𝐴 = 𝜃𝑘

𝐴 + 𝛽𝑘𝛿𝑘𝜙 𝑠𝑘 , 𝑎𝑘 [𝑟(𝑠𝑘 , 𝑎𝑘) + 𝛾𝐻(𝜃𝑘
𝐴, 𝜃𝑘

𝐵 , 𝑠𝑘+1) − 𝜙 𝑠𝑘 , 𝑎𝑘
𝑇𝜃𝑘

𝐴

𝜃𝑘+1
𝐵 = 𝜃𝑘

𝐵 + (1 − 𝛽𝑘)𝛿𝑘𝜙 𝑠𝑘 , 𝑎𝑘 [𝑟(𝑠𝑘 , 𝑎𝑘) + 𝛾𝐻(𝜃𝑘
𝐵 , 𝜃𝑘

𝐴, 𝑠𝑘+1) − 𝜙 𝑠𝑘 , 𝑎𝑘
𝑇𝜃𝑘

𝐵

𝜃𝑘+1 = 𝜃𝑘 + α𝑘𝜙 𝑠𝑘 , 𝑎𝑘 [𝑟 𝑠𝑘 , 𝑎𝑘 + 𝛾𝐻(𝜃𝑘 , 𝜃𝑘 , 𝑠𝑘+1) − 𝜙 𝑠𝑘 , 𝑎𝑘
𝑇𝜃𝑘]

𝐻 𝜃1, 𝜃2, 𝑠 = 𝜙 𝑠, argmax
𝑎

𝜙 𝑠, 𝑎 𝑇𝜃1
𝑇
𝜃2,  𝛽𝑘~Bernoulli

1

2
i.i.d.



The Mean-Squared Error

• Asymptotic mean-squared errors

◦ Q-learning: 𝐴𝑀𝑆𝐸 𝜃 ≔ lim
𝑘→∞

𝑘𝐸 𝜃𝑘 − 𝜃∗ 2

◦ Double Q-learning: 𝐴𝑀𝑆𝐸 𝜃𝐴 ≔ lim
𝑘→∞

𝑘𝐸 𝜃𝑘
𝐴 − 𝜃∗

2

◦ Double Q-learning with average estimator: 𝐴𝑀𝑆𝐸
𝜃𝐴+𝜃𝐵

2
≔ lim

𝑘→∞
𝑘𝐸

𝜃𝑘
𝐴+𝜃𝑘

𝐵

2
− 𝜃∗

2

Theorem (informal): Set 𝛼𝑘 =
𝑔

𝑘
, 𝛿𝑘 =

2𝑔

𝑘
and assume both Q-learning and Double Q-learning converge. 

Under mild conditions, we have 
𝐴𝑀S𝐸 𝜃𝐴 = 𝐴𝑀𝑆𝐸 𝜃𝐵 ≥ 𝐴𝑀𝑆𝐸 𝜃 + 𝑐0𝑔

𝐴𝑀𝑆𝐸
𝜃𝐴 + 𝜃𝐵

2
= AMSE 𝜃
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(𝑐0 > 0, 𝑔 > 0)
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Baird’s Example
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GridWorld
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Observations

• Both from theoretical and numerical results: 

◦ Double Q-learning with the same stepsize converges slower than Q-learning; 

◦ Double Q-learning with twice stepsize can converge as fast as and even faster than Q-learning, 
but suffers from larger variance;

◦ When using average estimator as the output, Double Q-learning with twice stepsize obtains 
both faster convergence rate and smaller mean-squared error.



RL 
Practice

RL 
Theory

Optimization
Control Theory 

35

Concluding Remarks

Existing optimization and control theory can help 

• Build better understanding of common RL techniques 

• Provide unified framework, finite sample analysis, and tight bounds 

• Design principled, data-efficient, robust, and  extensible RL algorithms


