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Reinforcement Learning

- An agent selects actions to maximize long-term reward

Agent

AN
State Reward Action E]
o

Environment

- A wide spectrum of applications

Games Self-driving vehicle Chatbot



Reinforcement Learning

- Markov decision processes : describe the environment for RL:

o State (S): a (finite) set of states

o Action (A): a (finite) set of actions

o Probability transition matrix (Psasl): P(s;41 = S'|s; = s,a; = a), unknown
o Reward function (R): R(s,a) = E[Rt+1|s: = s,a; = a

o Discount factor (y): y € [0,1]

- Policy (): the agent’s behavior strategy, a ~ (- |s)




Reinforcement Learning

Two fundamental tasks in RL:

Policy Evaluation
N
|
Bellman Equation
Policy Optimization

|

Bellman Optimality
Equation
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Reinforcement Learning

Challenges of solving Bellman equations:

- Unknown MDP: P(s'|s,a), R(s, a) are unknown
> We only observe samples {(sk, ay, Sx+1)}r=1 from some behavior policy

o Resort to bootstrapping or stochastic approximation schemes
o Example: standard Q-learning

Q(8k,ar) = Q(8k, ax) + ap(R(sk, ar) + - glgfj@(skﬂ; a') — Q(sk,ar))

- Large State and Action Spaces:

o

S, A can be extremely large, even infinite

o

Resort to function approximation techniques

o

Classical algorithms can diverge when function approximation is used.

Function Approximation



The Interplay of Dynamical Systems and Reinforcement Learning

RL is all about learning unknown dynamical - Many RL algorithms can be viewed as
systems. discrete dynamical systems.

Stochastic dynamic programming
State Unknown System ,
rewards

- — Q1= P J<—‘

\\xx‘*}’ ACtion k < k + 1




Recipe for Analyzing Classical RL Algorithms

Stochastic Approximation

Dynamical Systems

d

Xk+1 = X + @ (f () + €x41) o = fxe)

Asymptotic Convergence

* TD-learning with LFA
[Tsitsiklis & Van Roy, 1997]

* Double TD-learning with LFA
[Lee & He, 2019]

* Synchronous Q-learning 0
[Borkar & Meyn, 2000]

* Asynchronous Q-learning .
[Jaakkola et al.,1994][Tsitsiklis, 1994] [Lee & He, 2020]

* Q-learning with LFA
[Melo, Meyn, & Ribeiro, 2008] [Lee & He, 2020] .

* Greedy-GQalgorithm
[Maei et al., 2010]

Finite-time
Convergence

TD-learning with LFA

[Srikant & Ying, 2019]
[Dalal et al., 2018] [Bhandari et al., 2019]
[Lakshminarayanan & Szepesvari, 2018]

Synchronous Q-learning
[Wainwright, 2019]

Asynchronous Q-learning

[Szepesvari, 1998][Even-Dar & Mansour, 2003]
[Qu & Wierman, 2020] [Li et al., 2020]

Q-learning with LFA
[Chen et al., 2019] [Wang & Giannakis,2020]

Tight Error Bound

TD-learning with LFA

[Hu & Syed, 2019]
[Devraj & Meyn, 2017]
[Chen et al., 2020]

Q-learning & Relative Q-learning
[Devraj & Meyn, 2020]

Double Q-learning
[Weng et al., 2020]



Recipe for Analyzing Modern Optimization-based RL Algorithms

(Non-)Convex Optimization First-Order Methods

min L(x) or minmaxL(x,y) e.g., GD, SGD, MD, SVRG, Primal-Dual, etc.
X X y

Policy Evaluation Asymptotic
e Residual gradient algorithm Convergence
e @GTD, GTD-2, and its cousins e —

* SVRG/SAGA

. o Finite-time
Policy Optimization Convergence
* Policy Gradient

« TRPO
+ PPO

e SPD-RL
« SBEED Lower Bound

IEEE Magazine Article : Optimization for Reinforcement Learning: from a single agent to cooperative agents. 2020. (with Lee, Kamal, and Cevher)




Dynamical Systems Perspectives for RL

(¢]

Unification

o

No need for objective/gradients/regularizations

Characterization of exact behavior

o

o

Theoretical insights and practical guidelines

« Challenges:
o Possibly nonlinear systems (e.g., even tabular Q-learning)

o Hard to cope with nonlinear function approximation

Question: How to systematically analyze the nonlinear dynamics of the large family of Q-learning algorithms?



A Quick Tour of the O.D.E. Analysis

10



The ODE Method
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THE O.D.E. METHOD FOR CONVERGENCE OF STOCHASTIC
APPROXIMATION AND REINFORCEMENT LEARNING*

V. S. BORKART AND S. P. MEYN?

Abstract. It is shown here that stability of the stochastic approximation algorithm is implied
by the asymptotic stability of the origin for an associated ODE. This in turn implies convergence of
the algorithm. Several specific classes of algorithms are considered as applications. It is found that
the results provide (i) a simpler derivation of known results for reinforcement learning algorithms;
(ii) a proof for the first time that a class of asynchronous stochastic approximation algorithms are
convergent without using any a priori assumption of stability; (iii) a proof for the first time that
asynchronous adaptive critic and @Q-learning algorithms are convergent for the average cost optimal
control problem.

Key words. stochastic approximation, ODE method, stability, asynchronous algorithms, rein-
forcement learning

AMS subject classifications. 62120, 93E25, 93E15

PII. S0363012997331639

1. Introduction. The stochastic approximation algorithm considered in this
paper is described by the d-dimensional recursion
(1.1) X(n+1)=X(n)+a(n)[h(X(n) + M(n+1)], n>0,
where X (n) = [Xi(n),..., Xq(n)]T € R% h: R? — R?, and {a(n)} is a sequence of
positive numbers. The sequence {M(n) : n > 0} is uncorrelated with zero mean.

Though more than four decades old, the stochastic approximation algorithm is
now of renewed interest due to novel applications to reinforcement learning [20] and as
a model of learning by boundedly rational economic agents [19]. Traditional conver-
gence analysis usually shows that the recursion (1.1) will have the desired asymptotic
behavior provided that the iterates remain bounded with probability one, or that
they visit a prescribed bounded set infinitely often with probability one [3, 14]. Un-
der such stability or recurrence conditions one can then approximate the sequence
X ={X(n) : n > 0} with the solution to the ordinary differential equation (ODE)

(1.2) i(t) = h(a(t))

with identical initial conditions z(0) = X (0).

11



The ODE Method: Key Idea

/]
Xi+1 = X + o (f (X)) + €x41) J" v / VPopa,
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Dynamical system, %xt = f(x;), is globally asymptotically stable if x; — x* for any x,.
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The ODE Method: Borkar and Meyn Theorem

SA: Xyi1 = Xi + o (f (Xi) + €x41) J

[Borkar and Meyn Theorem, 2000]

Under the following conditions:

a) Global Lipschitz continuity of the mapping f

b) Robbins-Monro stepsize: Ya; = ©,Yaf < ©

c) Bounded noise of martingale difference: E[||€,+111?|G] < Co(1 + || Xk ]1?), Yk = 0
d) % = fo(x) = lim 12

Cc—00 (o

e) Xy = f (%)

we have X;, - x" as k = oo,

13



Stability of Linear Systems and Applications in TD-learning

« Linear System:

d

The origin is an asymptotically stable

- TD-learning with Linear Function Approximation

Ox+1 = O + axd(sp)[r(sk, ar) + YP(Sk41)" 0 — P (i)  6k]

)
v

d
E(Qt —6*) = A(6, — 6%), A = ®TD(yP™ — I)® is Hurwitz J

« Applications to other TD-learning variants:
o TD(0), TD(A) [Tsitsiklis & Van Roy, 1997]
o GTD, TDC [Sutton et al., 2009]
o A-TD, D-TD [Lee and He, 2019]

* A matrix is Hurwitz if all eigenvalues have strictly negative real parts.

%xt = A% J equilibrium point if and only if A is Hurwitz.

14



Stability of Nonlinear Systems and Applications in Q-learning

Nonlinear System:

d
— % = f(x) J

[Khalil, 2002]

The origin is unique, globally asymptotically stable if there exists a twice
differentiable Lyapunov function V' (x) such that

keqllx||* < V(x) < kallx]|*

dv
—F G0 < —ks x|

for some positive constants a, kq, k,, k3.

Applications:

o Tabular Q-learning [Borkar & Meyn, 2000]
o Q-learning with linear function approximation [Melo et al., 2008] [Wang & Giannakis, 2020]

15



Stability of Linear Switching Systems

« Linear switching system:

d
Ext = Ag, Xt

o coupling between continuous dynamics and discrete events (switching)
o g;: switching signal € {1,2,---, M}; {44, ..., Ay} subsystem matrices

o g, = o(x;): state-feedback switching signal

[Lin and Antsaklis, 2009]

The origin is the unique globally asymptotically stable equilibrium point
there exists a full column rank matrix L and a family of NRD matrices {44, ..., Ay}
such that

LA, = A;L Vo € {1,2,...,M}.

Negative Row Dominant Diagonal (NRD) matrix A:  a;;+ Y. 1a;j| < 0, Vi

16



Switching System Perspective of Q-learning Algorithms
with Donghwan Lee (2020)

17



(Asynchronous) Q-learning

« Q-learning (Watkins, 1992)

Qr+1(Si ag) = Qr (s, ay) + o (r(sk, ax) +v rrif}x Qr(sk+1,a") — Q (S, ax))

> Use a single trajectory of samples {(sk, @y, Sx+1)} from behavior policy

o If every state-action pair is visited infinitely often, Q;— Q*with probability one

- Convergence Analysis
o The original proof [Watkins and Dayan, 1992]

o Stochastic-approximation-based approach [Jaakkola et al., 1994] [Tsitsiklis, 1994]
> Finite-time analysis: [Szepesvari, 1998][Even-Dar & Mansour, 2003]
o Recent work: [Qu & Wierman, 2020] [Li et al., 2020]




Switching System Model of Q-Learning

« Q-learning

Qr+1(Si ag) = Qr (s, ay) + o (r(sk, ax) +v rrif}x Qr(sk+1,a") — Q (S, ax))

- Dynamical system l

d
(0= Q") = (yDPIlyg, = D) (Q; = Q) + yDP(lly, — 1)Q"

o

Greedy policy: 1y, (s) = argmax,Q.(s, a)

o

Diagonal elements of D : state-action distribution

Fa

o

P = , P,=transition probability matrix for taking action a

o Mp=1[ Ta ] [Tdsey=1if n(s) =a’ and 0 otherwise

19



Switching System Model of Q-Learning

Q-learning

Qr+1(Si ag) = Qr(Sp, ag) + o (r(sy, ax) +v Hif}x Qr(sk+1,a") — Q (S, ax))

Dynamical system 1

d
(0= Q") = (yDPIlyg, = D) (Q; = Q) + yDP(lly, — 1)Q"

Affine switching system l

d
Tkt = AgxpXt + Doxy)

° X =Qr— Q% 0(xy) = w(ﬂQt):ﬂQt(S) = argmax, (. (s, a)
o : deterministic policy - integer

20



Stability Analysis: Upper and Lower Comparison Systems

Upper comparison system (linear switching system)

d
Q= Q") = (YDPIIyy, = D) (Q: = Q")

=
Original affine switching system o

d
—(Qc = Q") = (YDPlIyy, = D) (Qc = Q") + YDP(lly, — 1)Q"

>
Lower comparison system (linear system)

d
(0= Q") = (YDPIly,, — D) (Q: = Q")

21



Stability Analysis: Vector Comparison Principle

d
g =L

Linear system
Easy analysis

o~

J
8

Xt ~
~ Sw N\—-ﬁ-
<~ =

t

d d

d_xt f(xt) = d_xt f(xt)

Linear switching system
Easy analysis

!
18 A, is NRD

x; > 0 x; =0

[Vector Comparison Principle]

Iffand f are globally Lipschitz continuous, fis SENE

monotone increasing, then

f<f xo<Xy=x; <, Vt=0.

22



Stability and Convergence

« Immediate result:
©Q-Q'SQ-Q Q. —Q, Vt20

o The origin is the unique globally asymptotically stable equilibrium point of the three systems.

> Under the Robbins-Monro stepsize, @, = Q*, as k — oo,

- Extensions:
o Target-based Q-learning algorithms

o Q-learning with linear function approximation



Target-based Q-learning
Classical TD learning Standard Q-learning
(Sutton, 1988) (Watkins & Dayan 1992)
| |
/

/
Averaging TD learning (A-TD) Averaging Q-learning
Double TD learning (D-TD)

/ /
Target-based TD learning Target-based Q-learning

Lee and H., “Target-based temporal difference learning,” ICML, 2019.
Lee and H., “Periodic Q-learning,” L4DC, 2020.

Double Q-learning

(Hasselt, 2010)




Averaging Q-learning

« Algorithm:

Qie+1(Skr ai) = Qff (sp, ax) + e (r (s, ax) +y max Qe (Sk+1,a") — Qi (Sk, ax))

Qies1(Si ar) = Qg (s, a) + a8 (QF (s, a) — QF (s, ax))

o This can also be formulated as a switching system.

> Similarly, we can easily show that for any § > 0, Qf - Q* and QF — Q*, as k — .

25



Q-learning with Linear Function Approximation

« Algorithm:

Or1 = Ok + e d (i, i) [r(s, a) +y rrg}x((bek)(sk+1: a") — (@6y) (sk, ar)]

« Switching system:

d
0= (y®TDPI )P — ®"DD)6, + dTDR

« New sufficient condition:
—¢;D; +y$; DPII,Y.¢p; < 0,V admissible 7

> Under the above condition, we can easily show that for 8, —» 6™ as k — oo.

o Less conservative than the Melo’s condition.

26



The Roadmap

Q-Learning

Nonlinear ODE

Affine switching system

Asymptotic stability of upper and

lower comparison systems

$

Convergence

Qk+1(s,a) = Qr(s,a) —oy(r+vy max Qr(s’,a’) — Qx(s,a))

d
7 Q= Q") = (YDPIyy, — D) Q¢ = Q") +yDP (g, — 7)Q"

- Xt = Aa(xt)xt + ba(xt)

- —
\\\ X
\ N\ _-—N\
Xt ~
— ~, Xt ~ ~
- —e L
— t
N o -~

Comparison principle

27



Highlights

« First connection between reinforcement learning and switching systems

- Simple and intuitive analysis of asynchronous Q-learning based on existing control theory
« Unified framework for analyzing the convergence of a family of Q-learning algorithms

- Tight conditions and weak assumptions

«  Future Work
o Continuous-time vs. discrete-time dynamics of switching systems
> Finite-time convergence rate and tight error bounds
o Other Q-learning variants: deep Q-learning

o Efficient and robust RL algorithms from the control perspective

28



Is Double Q-learning Provably More Efficient than Q-learning?
with Weng, Gupta, and Srikant (2020)

29



Double Q-learning

Q-learning with LFA:

Or+1 = Ok + ard(Sg, ar)[r(sg, ax) + YH(O, Ok, Sk+1) — P(sk, ar) ' 0x]

Double Q-learning with LFA:

0,1 = 05 + BrSrd (s, ar)[r(sk, ax) + YH(OF, 0%, Siv1) — P (sp, ar)T 01

Op 1 = 0g + (1 — Br)Sidp(sk, ) [T (s, ar) + YH(OF, 0, k1) — d(s, ar)T 0k

T
H(64,6,5,5) = ¢ (s, argmax ¢(s,a)’ 6, ) 0,, Bi~Bernoulli G) ii.d.
a

30



The Mean-Squared Error

- Asymptotic mean-squared errors

o Q-learning: AMSE(0) = Ilim kE||0, — 0*||?

> Double Q-learning: AMSE (64) = I}im kE||H,‘\§1 —6

° Double Q-learning with average estimator: AMSE (

Set ap = %, 6k
Under mild conditions, we have

2

64+68 0f+6;

)—11 kE — 0

2
;{g and assume both Q-learning and Double Q-learning converge.

AMSE (64) = AMSE(0%) > AMSE(0) + cyg (co > 0,9 > 0)

04 + 98
AMSE —— | = AMSE(9)

31



Baird’s Example

. -+-Q
£ 10" -4 DQ
= —}— D-Q with twice the step size
g 10_2 ; —§— D-Q avg with twice the step size
‘:E - ""'-.-..._._'_._’_
g1
-
§ 10 1
0 5000 10000 15000 20000
Number of Samples
: Hl
(a) Baird’s Example [1] (b) Zero Reward
10' | - Q . - @
—+— D-Q = 10%- —4— D-Q
—— D-Q with twice the step size = —— D-Q with twice the step size
10-1 i —f— D-Q avg with twice the step size = —§— D-Q avg with twice the step size
H=
5 10"
=
-3 R
10 5 o'
: =
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of Samples Number of Samples
(¢) Small Random Reward (d) Large Random Reward

Figure 1: Simulation results for Baird’s example. The y-axis is in log scale.
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GridWorld

S

(a) An Example of 3 x 3 GridWorld

5 -9
= 10 1 D-Q
€3] . D-Q with twice the step size
T 10 D-Q avg with twice the step size
=
S . -1
fg 10
=
5107
-
10"

0 20000 40000 60000 80000 100000
Number of Samples

(c) 4 x 4 GridWorld

Figure 2: Simulation results for GridWorld with dimensions 3,4, 5. In all the three simulations,

Mean-Squared Error

Mean-Squared Error

10

107

-£- Q

—+- D-Q

—4— D-Q with twice the step size
—4— D-Q avg with twice the step size

0 20000 40000 60000 80000 100000
Number of Samples

(b) 3 x 3 GridWorld

-+ 0Q

—4— D-Q

—f— D-Q with twice the step size

i —§— D-Q avg with twice the step size

- x
T, ""Hﬂ-‘ﬂﬂ

b 28
~“F~

~¥.
.
. Sy

- S
Lol 3

0 20000 40000 60000 80000 100000
Number of Samples

(d) 5 x 5 GridWorld

Double Q-learning with twice the step-size and averaged output outperforms Q-learning.
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Observations

« Both from theoretical and numerical results:

° Double Q-learning with the same stepsize converges slower than Q-learning;

> Double Q-learning with twice stepsize can converge as fast as and even faster than Q-learning,
but suffers from larger variance;

> When using average estimator as the output, Double Q-learning with twice stepsize obtains
both faster convergence rate and smaller mean-squared error.



Concluding Remarks

Existing optimization and control theory can help

« Build better understanding of common RL techniques
- Provide unified framework, finite sample analysis, and tight bounds

- Design principled, data-efficient, robust, and extensible RL algorithms




