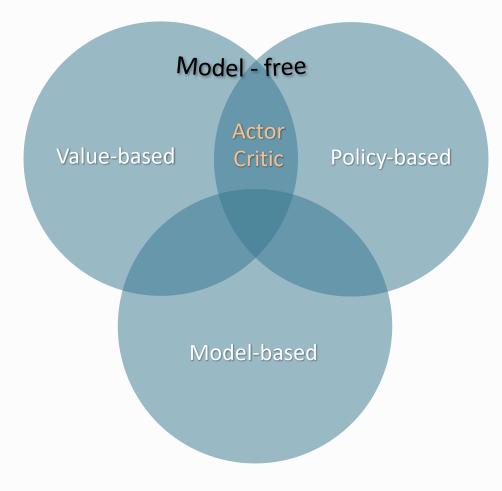
EPFL Summer School on Data Science, Optimization and Operations Research August 15-20, 2021

Lecture 4: RL from Deep Learning Perspectives

Niao He, D-INFK, ETH Zurich

Recap: Reinforcement Learning Approaches

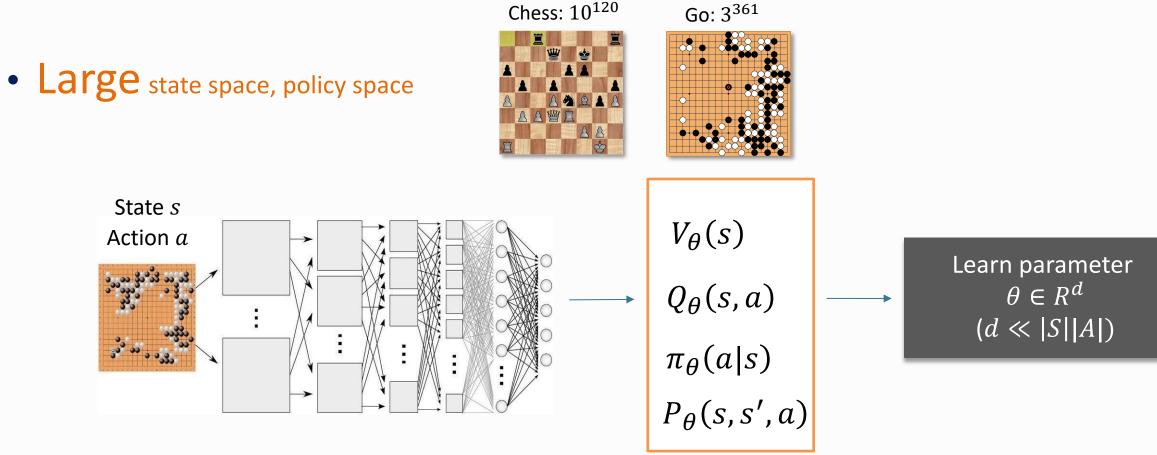


- Value-based RL
 - Estimate the optimal value function $Q^*(s, a)$
 - Example: Q-learning
- Policy-based RL
 - Search directly the optimal policy $\pi^*(\cdot | s)$
 - Example: Policy Gradient Method
- Model-based RL
 - First estimate the model *P*, *R* and then do planning

Outline of Lecture Series

		Focus: Provably convergent "deep" RL methods
Lecture 1	Introduction to RL	
Lecture 2	RL from Control Perspectives - Value-based RL	
Lecture 3	RL from Optimization Perspectives - Policy-based RL	 RL with nonlinear function approximation RL with neural network approximation
Lecture 4	RL from Deep Learning Perspectives - Deep RL	
Lecture 5	RL from Game Perspectives	

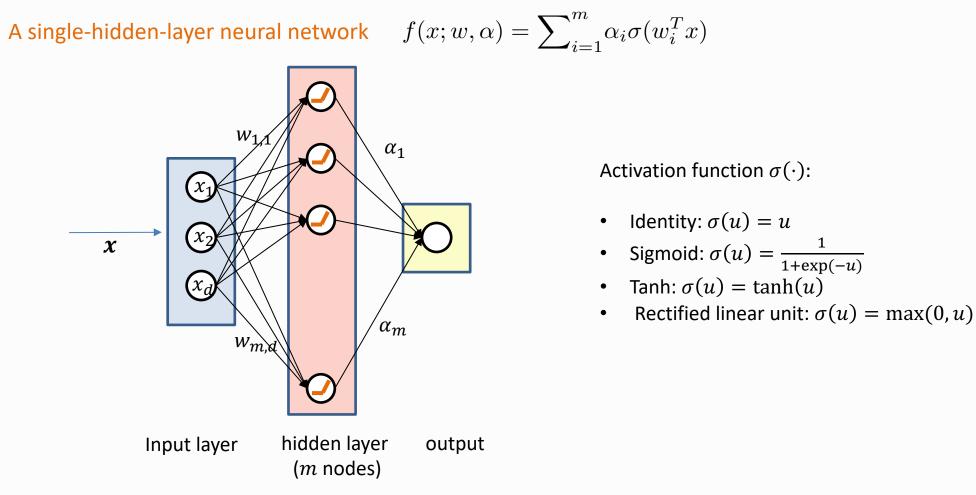
The Grand Challenge



Using neural network approximation seems a must. AI = RL + DL?

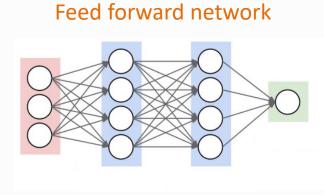
Neural Networks

• Nested composition of (learnable) linear transformation with (fixed) nonlinear activation functions

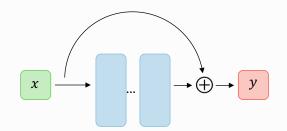


Deep Neural Networks

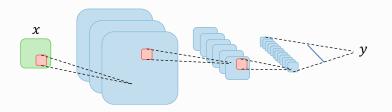
• More hidden layers, different activation functions, more general graph structure



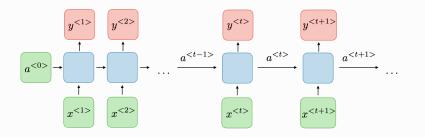
Residual network



Convolutional network



Recurrent network



Representation Power - why neural networks?

Shallow networks are universal approximators

Any continuous function on bounded domain can be approximated arbitrarily well by a onehidden layer network with nonconstant and increasing continuous activation function.

[Cybenko, 1989; Hornik et al., 1989; Barron, 1993]

Number of neurons can be large.

Benefits of depth

- A deep network cannot be approximated by a reasonably-sized shallow network.
- There exists ReLU networks with poly(d) nodes in 2 hidden layers which cannot be approximated by 1hidden-layer networks with less than 2^d nodes.

[Eldan and Shamir, 2015]

There exists a function with $O(L^2)$ layers and width 2 • which requires width $O(2^L)$ to approximate with *O*(*L*) layers. [Telgarsky 2015,2016]

Training with Neural Networks

Overfitting

regularization techniques
 (dropout, early stopping, etc.)

Nonconvexity ^P noisy gradient

Ill-conditioning

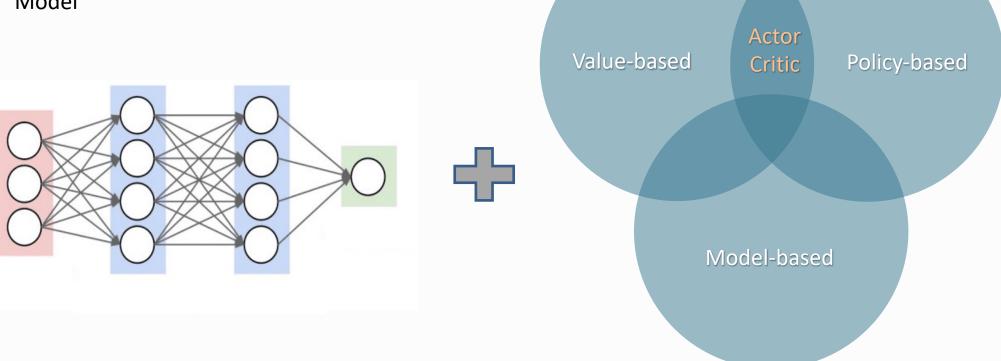
Gradient vanishing or exploding

ReLU activation, gradient clipping

adaptive gradient methods (Adam, AdaGrad, RMSprop, etc.)

Deep Reinforcement Learning

- Using (deep) neural networks to represent
 - Value function
 - Policy
 - Model

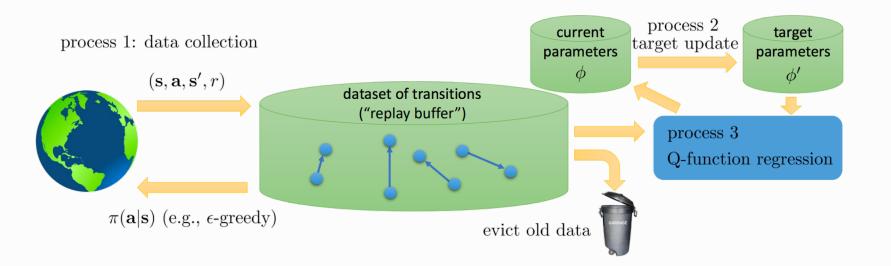


Model - free

Deep Value-based and Actor-critic RL

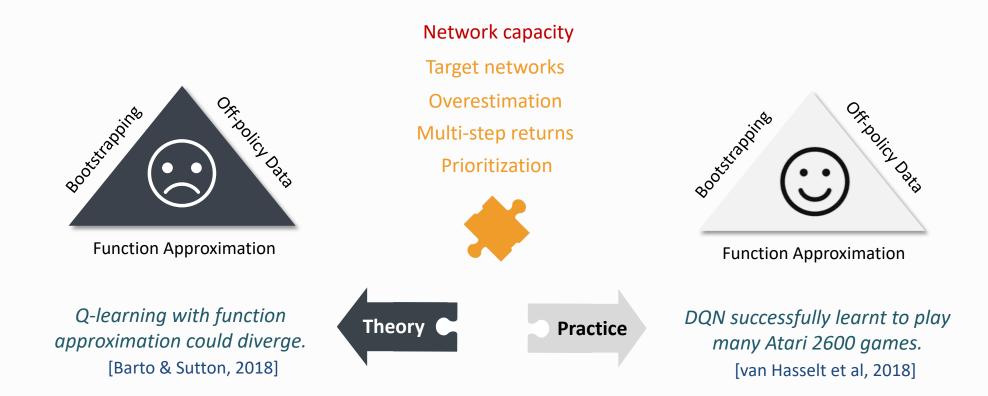
• Deep Q-Learning

$$Q^*(s,a) \approx Q(s,a;w)$$
$$\min_{w} L(w) := \mathbb{E}_{(s,a,s',r)\sim\mathcal{D}} \left[(r + \gamma \max_{a'} Q(s',a';w^-) - Q(s,a;w))^2 \right]$$

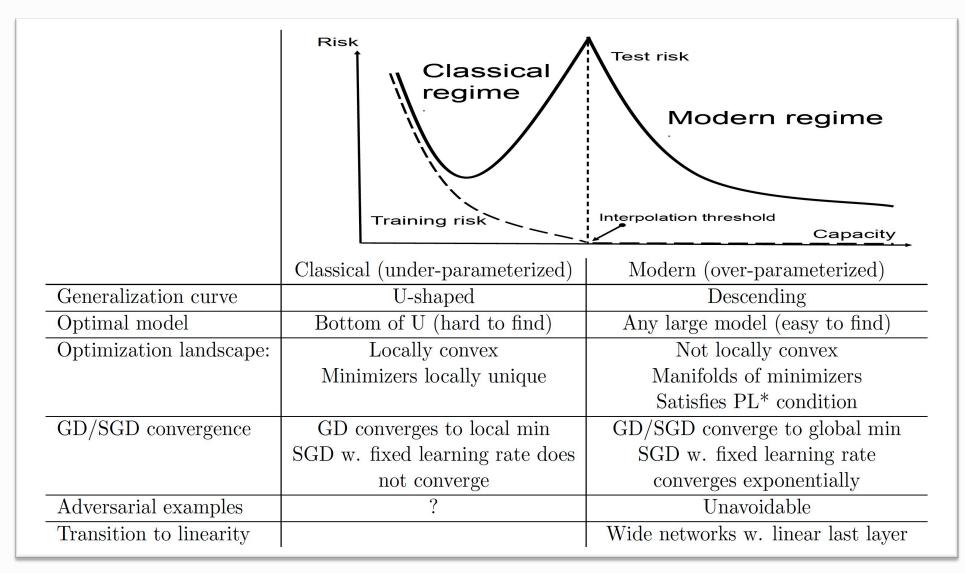


• Stabilizing training: (prioritized) experience replay, target network, double learning, dueling network.

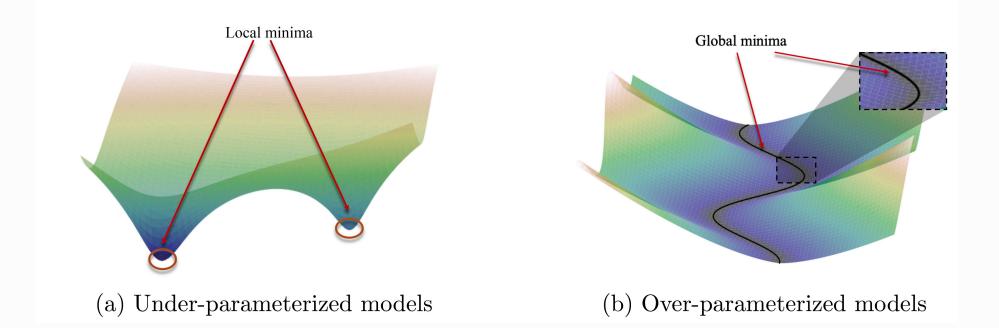
The Deadly Triad?



Wisdom from modern deep learning theory



The optimization landscape



Extensive work:

Jacot et al. 2018; Li and Liang 2018; Du et al. 2018; Allen-Zhu et al. 2018; Oymak and Soltanolkotabi 2019; Zou et al. 2018; Chizat and Bach 2019; Ji and Telgarsky 2019a; Z. Chen et al. 2019; Arora et al. 2019; Cao and Gu 2020;

The neural tangent kernel (NTK)

• Supervised learning: find a model parameter that fits the training data

$$f(x_i; w^*) \approx y_i, \quad i = 1, \dots, n$$

$$\min_{w \in \mathbb{R}^m} L(w) := \frac{1}{2} \sum_{i=1}^n (f(x_i; w) - y_i)^2$$

• Neural tangent kernel:

$$K_{ij}(w) = \langle \nabla_w f(x_i; w), \nabla_w f(x_j; w) \rangle$$
$$K_{ij}(w_0) = \mathbb{E}_{w_0 \sim N(0, I_m)} \langle \nabla_w f(x_i; w_0), \nabla_w f(x_j; w_0) \rangle$$

• Kernel matrix: $K(w_0) \ge 0$ if m is sufficiently large

Key insight behind the scene

• Gradient flow:

$$\frac{dw(t)}{dt} = -\nabla L(w(t))$$
$$\mathbf{u}(t) = f(w(t); \mathbf{x}) - \mathbf{y}$$
$$\frac{d\mathbf{u}(t)}{dt} = -K(w(t))\mathbf{u}(t)$$

• PL* condition

$$\|\nabla L(w)\|^2 = (f(w; \mathbf{x}) - \mathbf{y})^T K(w) (f(w; \mathbf{x}) - \mathbf{y})$$

$$\geq 2 \cdot \lambda_{min} (K(w)) \cdot L(w)$$

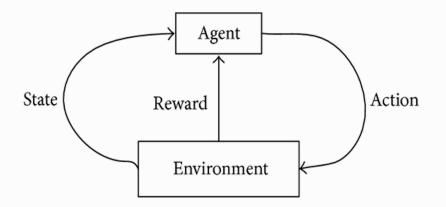
Supervised Learning vs. RL

• **Common features:** learning from experience and generalize

- SL: given $(x_i, y_i)_{i=1,...,n}$, learn best f in hypothesis class
- RL: given $(s_i, a_i, r_i)_{i=1,\dots,n}$, learn best Q(s, a) or $\pi^*(a|s) = \arg\min_a Q(s, a)$.

• Distinguishing features of RL:

- Lack of supervisor, only a reward signal
- Delayed feedback
- Non-i.i.d. data
- Difficulty with data reuse



Notation Recap

MDP ($S, \mathcal{A}, P, R, \mu, \gamma$)

State value function:	$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) s_{0} = s ight]$
State-action value function:	$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t},a_{t}) s_{0} = s, a_{0} = a \right]$
Optimal value function:	$V^*(s) := \max_{\pi} V^{\pi}(s), Q^*(s,a) := \max_{\pi} Q^{\pi}(s,a)$
Optimal policy:	$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^*(s, a)$
Bellman equation:	$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot s, a)} V^{\pi}(s') \right]$
Bellman optimality:	$Q^*(s,a) = R(s,a) + \mathbb{E}_{s' s,a} \left[\gamma \max_{a' \in \mathcal{A}} Q^*(s',a') \right]$
Policy gradient:	$\frac{\partial V^{\pi_{\theta}}(\mu)}{\partial \theta} = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot s)} \left[Q^{\pi_{\theta}}(s, a) \nabla \log \pi_{\theta}(a s) \right]$
State visitation distribution:	$d^{\pi}_{\mu}(s) = \mathbb{E}_{s_0 \sim \mu} \left[(1 - \gamma) \sum_{k=0}^{\infty} \gamma^k P(s_k = s s_0, \pi) \right]$

TD Learning with Neural Network Approximation

• <u>Value function approximation</u>: $x = \phi(s) \in \mathbb{R}^d$

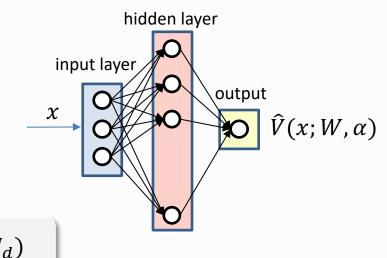
$$\widehat{V}(x; W, \alpha) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \alpha_i (W_i^T x)^+$$

<u>Symmetric Initialization:</u>

$$\alpha_i = -\alpha_{i+m/2} \sim Unif\{-1,1\}, W_i(0) = W_{i+m/2}(0) \sim N(0, I_d)$$

Neural TD Learning:

$$W(t+1) = W(t) + \eta_t \left[r(x_t) + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t) \right] \nabla_W \hat{V}_t(x_t)$$



Optimization Perspective

Minimizing mean-square Bellman error (MSBE):

$$\min_{W} E_{x \sim \mu} \left(\hat{V}(x; W, \alpha) - \left(r(x) + \gamma E_{x'|x} \hat{V}(x'; W, \alpha) \right) \right)^2$$

- TD Learning can be viewed as a stochastic semi-gradient method.
- With neural network approximation, the MSBE objective becomes non-convex.
- Approximation error between $\hat{V}(x; W, \alpha)$ and true value function V(x).

Goal: Can we achieve $\|\hat{V}_T - V\| \le \epsilon$?

- Sample complexity T (required number of samples)?
- Network complexity *m* (required number of neurons)?

Existing Theory

<u>TD Learning with linear function approximation</u>

- Finite-time analysis of TD with projection: [Bhandari et al., 2019]
- Finite-time analysis of TD without projection: [Srikant & Ying, 2019]
- Finite-time analysis under i.i.d. setting: [Dalal et al., 2018], [Lakshminarayanan & Szepesvári, 2018]

<u>(Stochastic) Gradient Descent with two-layer overparametrized neural network</u>

- Infinite-width limit $(m \rightarrow \infty)$: [Jacot et al., 2018], [Chizat et al., 2019]
- GD with polynomial width: [Du et al., 2018], [Oymak and Soltanolkotabi, 2019], [Arora et al., 2019]
- SGD with polylogarithmic width (classification only): [Ji & Telgarsky, 2020]

Key Challenges:

- Massive overparameterization (poly in |S|) is not suitable for TD Learning
- Drift of the network parameter ||W(t) W(0)||

Neural Tangent Kernel

• Recall $\widehat{V}(x; W, \alpha) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \alpha_i (W_i^T x)^+$

$$\hat{V}(x;W,\alpha) \approx \hat{V}(x;W(0),\alpha) + \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \alpha_i I\left(W_i^T(0)x \ge 0\right) x^T [W_i - W_i(0)]$$

$$\hat{V}(x; W, \alpha) \approx \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \alpha_i I\left(W_i^T(0) x \ge 0\right) x^T W_i$$

Neural Tangent Kernel:

$$K(x, y) = E_{w_0 \sim N(0, I_d)}[I(w_0^T x \ge 0)I(w_0^T y \ge 0)x^T y]$$

- The NTK is a universal kernel.
- The corresponding RKHS is dense in the continuous function space defined on a compact set.

• Assumption:
$$V(x) = E[v^T(w_0)x \cdot I(w_0^T x \ge 0)]$$
, where $\sup_{w} ||v(w)||_2 \le \overline{v} < \infty$.

Neural TD Learning with Regularization

Algorithm 1: Projection-Free NTD

$$W(t+1) = W(t) + \eta \cdot g_t$$

Regularization: Early stopping $T = T(\bar{\nu}, \epsilon, \delta)$

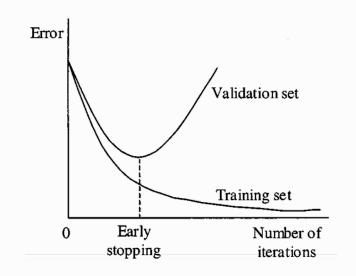
(Ji & Telgarsky, '19, Li et al., '20) for SL

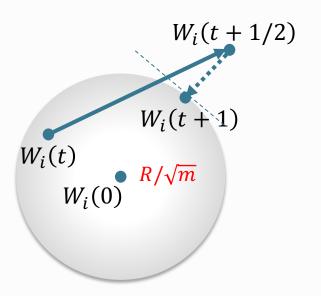
Algorithm 2: Max-Norm NTD

$$W_i(t+1) = \operatorname{Proj}_{B(W_i(0),R)}[W_i(t) + \eta \cdot g_t^i]$$

Regularization: Max-norm $||W_i(t) - W_i(0)||_2 \le R/\sqrt{m}$

(Srivastava, '14, Goodfellow, '13) for SL





Convergence of Neural TD

Assumption: $V(\cdot) \in F_{NTK}$ (dense in cont. functions over a compact state space (Ji et al., '19))

$$\boldsymbol{E}\left[\left|\hat{V}_{T}-V\right|_{\mu}\mathbf{1}_{\mathcal{E}}\right] \leq \epsilon \text{ where } \boldsymbol{P}(\mathcal{E}) > 1-\delta$$

Algorithm 1: Projection-Free NTD

Sample complexity: $T = poly(\bar{v})/\epsilon^6$

Network width: $m = poly(\bar{\nu})/\epsilon^6$

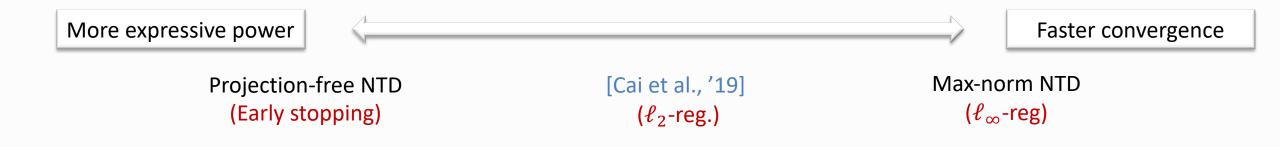
Algorithm 2: Max-Norm NTD Sample complexity: $T = poly(R)/\epsilon^4$ Network width: $m = poly(R)/\epsilon^2$ Projection radius: $R > \overline{\nu}$

Here $\bar{\nu}$ is the bound of the NTK norm of $V(\cdot)$.

Highlight

• Some regularization + modest overparameterization → convergence to true value function

	State space	Network	Sample	Error	Regularization
		width	complexity		
Cai et al., 2019	General	$O(1/\epsilon^8)$	$O(1/\epsilon^4)$	$\epsilon + \epsilon_m$	ℓ_2 -projection
Wang et al., 2019	General	$O(1/\epsilon^8)$	$O(1/\epsilon^4)$	$\epsilon + \epsilon_{\infty}$	ℓ_2 -projection
Agazzi & Lu, 2019	Finite	$poly(\mathcal{X})$	$O(\log(1/\epsilon))$	ϵ	$poly(\mathcal{X})$ width
Our result	General	$\widetilde{O}(1/\epsilon^6)$	$O(1/\epsilon^6)$	ϵ	Early stopping
Our result	General	$\widetilde{O}(1/\epsilon^2)$	$O(1/\epsilon^4)$	ϵ	Max-norm projection



Lyapunov Drift Analysis

Minimum norm solution:

$$\overline{W} = [W_i(0) + \alpha_i \frac{\nu(W_i(0))}{\sqrt{m}}]_{i \in [m]}$$

Note that $\nabla \hat{V}(x; W(0), a)^T \overline{W} \to V(x), as m \to \infty$.

- Lyapunov function: $L(W(t)) = ||W(t) \overline{W}||_2^2$
- Stopping time: $\tau = \inf \left\{ t > 0 : \|W_i(t) W_i(0)\|_2 > \frac{\lambda}{\sqrt{m}} \text{ for some } i \right\}.$
- Drift bound:

$$E_t \Big[L \Big(W(t+1) \Big) - L \big(W(t) \Big) \Big] \le -2\eta (1-\gamma) \Big\| \widehat{V}_t - V \Big\|_{\mu}^2 + O \left(\eta^2 + \frac{\eta \| \widehat{V}_t - V \|_{\pi}}{\sqrt{m}} \right), \text{ for } t < \tau$$

Drift Bound

• Recall $W(t+1) = W(t) + \eta g_t$,

 $\|W(t+1) - \overline{W}\|_{2}^{2} = \|W(t) - \overline{W}\|_{2}^{2} + 2\eta g_{t}^{T} (W(t) - \overline{W}) + \eta^{2} \|g_{t}\|_{2}^{2}$

 $g_t = \delta_t \cdot \nabla_W \hat{V}_t(x_t; W(t)),$ $\delta_t = r(x_t) + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t).$

• Bound the second term

 $E[g_t^T(W(t)-\overline{W})]$

 $= E[\delta_t \cdot \nabla_W \hat{V}_t(x_t; W(t))^T (W(t) - \overline{W})]$

 $= E \left[\delta_t \cdot \left(\hat{V}_t (x_t; W(t)) - V(x_t) + V(x_t) - \nabla \hat{V}_t (x_t; W(0))^T \overline{W} + \nabla \hat{V}_t (x_t; W(0))^T \overline{W} - \nabla \hat{V}_t (x_t; W(t))^T \overline{W} \right) \right]$ $\leq -(1 - \gamma) \left\| \hat{V}_t - V \right\|_{\mu}^2 \qquad \leq O \left(\frac{\overline{v}}{\sqrt{m}} \right) \qquad \leq O \left(\frac{\lambda}{\sqrt{m}} \right)$

Extensions and Open Questions

- Extensions of Neural TD Learning
 - Markovian setting
 - Extended feature vector
 - Smooth activation functions

- Open Questions
 - Beyond two-layers, can we achieve reduced overparameterization bound?
 - Beyond two-layers, under what conditions can we achieve global convergence?
 - Is early stopping or regularization necessary?
 - Extension to deep Q-learning to find optimal policy?
 - How to integrate RL with general nonlinear function approximation in a more principled manner?

Optimization-based RL Algorithms

Bellman-residual-minimization methods

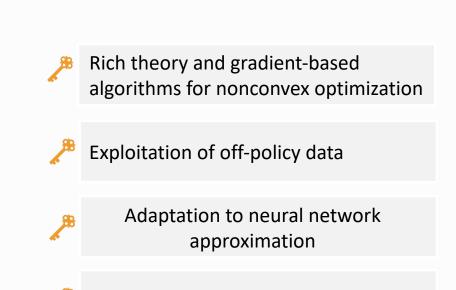
- Residual gradient algorithm [Baird, 1995]
- Gradient TD [Sutton et al., 2009]
- Least-Squares Policy Iteration [Antos et al., 2006]
- SBEED [Dai et al., 2018]

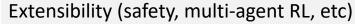
• Linear programming-based methods

- Stochastic primal-dual method [Chen & Wang, 2016] [Lee & He, 2018]
- Dual actor-critic [Dai et al., 2017]
- Primal-dual stochastic mirror descent [Jin & Sidford, 2020]
- Logistic Q-learning [Bas-Serrano et al., 2021]

• Policy gradient methods

- Natural policy gradient method (NPG) [Kakade, 2001]
- Trust region policy optimization (TRPO) [Schulman et al., 2015]
- Proximal policy optimization algorithm (PPO) [Schulman et al., 2017]
- Entropy-regularized policy gradient methods and actor-critic algorithms





Revisit Bellman Optimality Equation

• Recall the Bellman optimality equation:

$$V^*(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \mathbb{E}_{s'|s, a} [V^*(s')] \right]$$

• Equivalently:

$$V^*(s) = \max_{\pi(\cdot|s) \in P(\mathcal{A})} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[R(s,a) + \gamma \mathbb{E}_{s'|s,a} [V^*(s')] \right]$$

• The *max*-operator is highly nonsmooth and causes instability when function approximation is used.

Smoothing the *max*-Operator

• Introduce entropic regularization to Bellman optimality equation,

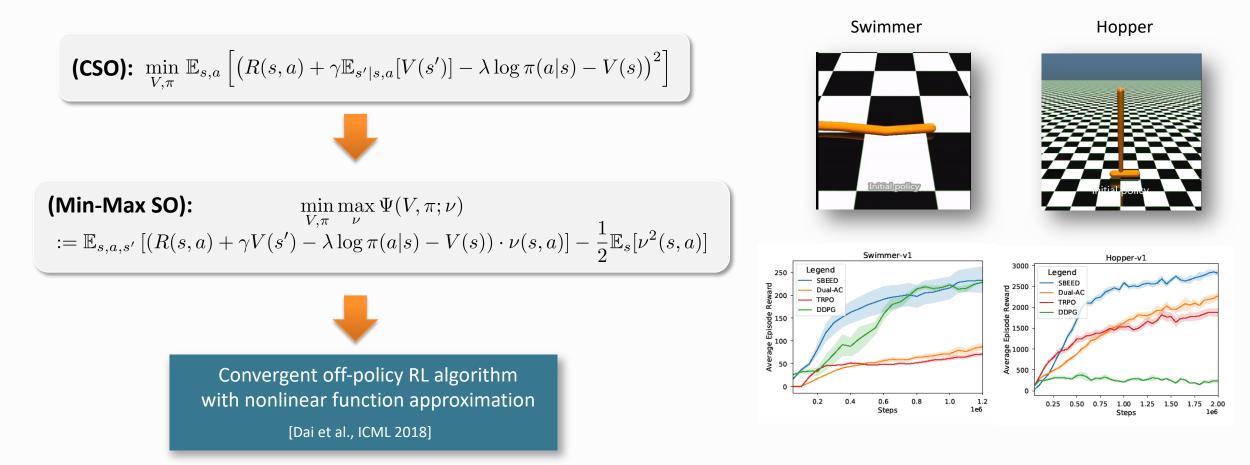
$$\begin{aligned} V_{\lambda}(s) &= \max_{\pi(\cdot|s) \in P(\mathcal{A})} \left(\mathbb{E}_{a \sim \pi(\cdot|s)} \left[R(s,a) + \gamma \mathbb{E}_{s'|s,a} [V_{\lambda}(s')] \right] + \lambda \cdot H(\pi,s) \right) \\ &= \lambda \log \left(\sum_{a \in \mathcal{A}} \exp \left(\frac{R(s,a) + \gamma \mathbb{E}_{s'|s,a} [V_{\lambda}(s')]}{\lambda} \right) \right) \end{aligned}$$

- $H(\pi, s) = -\sum \pi(a|s) \log \pi(a|s)$ is the entropy, $\lambda > 0$ is the smoothness parameter
- The smoothed Bellman operator is also a γ -contraction.
- Smoothing bias: $||V^*(s) V_{\lambda}(s)||_{\infty} \leq \frac{\lambda \cdot C}{1-\gamma}$.
- The corresponding $(V_{\lambda}, \pi_{\lambda})$ satisfies the smoothed Bellman equation:

 $V(s) = R(s, a) + \gamma \mathbb{E}_{s'|s, a}[V(s')] - \lambda \cdot \log \pi(a|s), \forall a \in \mathcal{A}.$

Bellman Residual Minimization

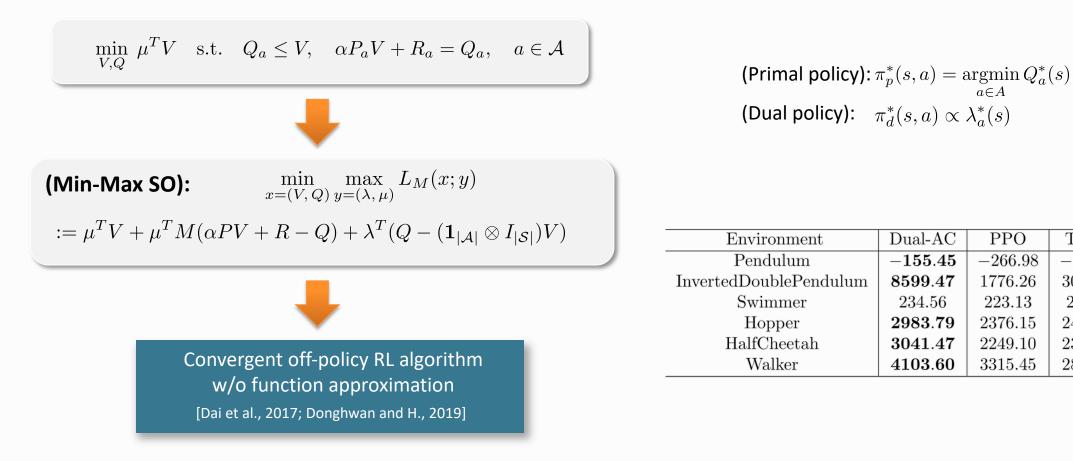
• Minimizing mean-squared smoothed Bellman error:



Caveat: require solving nonconvex-(non)concave min-max optimization!

Linear-programming-based Method

LP formulation: ٠



Caveat: lack of duality; require solving nonconvex-(non)concave min-max optimization!

TRPO

-245.11

3070.96

232.89

2483.57

2347.19

2838.99

PPO

-266.98

1776.26

223.13

2376.15

2249.10

3315.45

Dual-AC

-155.45

8599.47

234.56

2983.79

3041.47

4103.60

Summary

- Understanding the convergence and generalization of deep RL from modern deep learning theory
- Principled approaches for RL with neural network approximation

Value-based methods

- Neural TD learning
- Neural Q-learning

Optimization-based methods

- Bellman Residual Minimization
- Linear Programming

Policy-based methods

- Neural Policy Gradient
- Neural Actor Critic

Open Questions

- Benefits of depth and different architectures?
- Nonconvex min-max optimization?
- Regularization and sample complexity?

Reference

- [Cayci, Satpathi, H., Srikant, 2021] <u>Sample Complexity and Overparameterization Bounds for Temporal</u> <u>Difference Learning with Neural Network Approximation</u>. arXiv preprint arXiv:2103.01391, 2021.
- [Dai et al., 2018] <u>SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation</u>. ICML 2018.
- [Du et al., 2019] Gradient Descent Provably Optimizes Over-parameterized Neural Networks. ICLR 2019.
- [Fan et al., 2020] A Theoretical Analysis of Deep Q-Learning. arXiv: 1901.00137, 2019.