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Recap: Reinforcement Learning Approaches  

• Value-based RL  
◦ Estimate the optimal value function 𝑄∗(𝑠, 𝑎)
◦ Example: Q-learning 

• Policy-based RL
◦ Search directly the optimal policy 𝜋∗(⋅ |𝑠)
◦ Example: Policy Gradient Method

• Model-based RL 
◦ First estimate the model 𝑃, 𝑅 and then do planning 

Value-based Policy-based

Model-based

Actor
Critic
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Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Introduction to RL 

RL from Control Perspectives
- Value-based RL 

RL from Optimization Perspectives
- Policy-based RL 

RL from Deep Learning Perspectives
- Deep RL

RL from Game Perspectives

o RL with nonlinear function approximation 

o RL with neural network approximation 

Outline of Lecture Series 

Focus:
Provably convergent “deep” RL methods



The Grand Challenge 

• Large state space, policy space
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Go: 3"#$Chess: 10$%&

Using neural network approximation seems a must. 
AI = RL + DL? 

Learn parameter
𝜃 ∈ 𝑅!

(𝑑 ≪ 𝑆 |𝐴|)

State 𝑠
𝑉" 𝑠

𝑄" 𝑠, 𝑎

𝜋" 𝑎|𝑠

𝑃" 𝑠, 𝑠#, 𝑎

Action 𝑎



Neural Networks 

• Nested composition of (learnable) linear transformation with (fixed) nonlinear activation functions
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A single-hidden-layer neural network f(x;w,α) =
∑m

i=1
αiσ(w

T

i x)

Activation function 𝜎 ⋅ :

• Identity: 𝜎 𝑢 = 𝑢
• Sigmoid: 𝜎 𝑢 = $

$'()*(,-)
• Tanh: 𝜎 𝑢 = tanh 𝑢
• Rectified linear unit: 𝜎 𝑢 = max(0, 𝑢)

hidden layer
(𝑚 nodes)

Input layer output

𝒙

𝑤$,$

𝑥$

𝑥%

𝑥0

𝑤1,0

𝛼$

𝛼1



Deep Neural Networks 

• More hidden layers, different activation functions, more general graph structure ….
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𝑥
𝑦

…𝑥 𝑦

Convolutional network

Residual network Recurrent network

Feed forward network



Representation Power - why neural networks? 

• Any continuous function on bounded domain 
can be approximated arbitrarily well by a one-
hidden layer network with nonconstant and 
increasing continuous activation function. 
[Cybenko, 1989; Hornik et al.,1989; Barron, 1993]

• Number of neurons  can be large. 
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• A deep network cannot be approximated by a 
reasonably-sized shallow network.

• There exists ReLU networks with 𝑝𝑜𝑙𝑦(𝑑) nodes in 2 
hidden layers which cannot be approximated by 1-
hidden-layer networks with less than 2! nodes. 
[Eldan and Shamir, 2015]

• There exists a function with 𝑂 𝐿" layers and width 2 
which requires width 𝑂 2# to approximate with 
𝑂(𝐿) layers. [Telgarsky 2015,2016]

Benefits of depthShallow networks are universal 
approximators



Training with Neural Networks

• Nonconvexity
noisy gradient 

• Gradient vanishing or exploding 
ReLU activation, gradient clipping  

• Ill-conditioning 
adaptive gradient methods 

(Adam, AdaGrad, RMSprop, etc.)

• Overfitting
regularization techniques       
(dropout, early stopping, etc.)



Deep Reinforcement Learning 

• Using (deep) neural networks to represent 
◦ Value function
◦ Policy
◦ Model
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Value-based Policy-based

Model-based

Actor
Critic



Deep Value-based and Actor-critic RL  

• Deep Q-Learning 

• Stabilizing training:  (prioritized) experience replay, target network, double learning, dueling network. 
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Q∗(s, a) ≈ Q(s, a;w)

min
w

L(w) := E(s,a,s′,r)∼D

[

(r + γmax
a′

Q(s′, a′;w−)−Q(s, a;w))2
]

Figure source: EE-618 at EPFL



The Deadly Triad? 
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Function Approximation

Boo
tst

rap
pin

g

Off-policy Data

Q-learning with function 
approximation could diverge. 

Target networks

Overestimation
Multi-step returns

Network capacity

Prioritization

Theory

Function Approximation

Boo
tst

rap
pin

g

Off-policy Data

DQN successfully learnt to play 
many Atari 2600 games.

[van Hasselt et al, 2018]

Practice

[Barto & Sutton, 2018]
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Wisdom from modern deep learning theory 

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the prism of  Interpolation, 2021.
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The optimization landscape

Liu et al. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks, 2021.

Extensive work:   
Jacot et al. 2018; Li and Liang 2018; Du et al. 2018; Allen-Zhu et al. 2018; Oymak and Soltanolkotabi
2019; Zou et al. 2018; Chizat and Bach 2019; Ji and Telgarsky 2019a; Z. Chen et al. 2019; Arora et al. 
2019; Cao and Gu 2020; ……



The neural tangent kernel (NTK)

• Supervised learning: find a model parameter that fits the training data

• Neural tangent kernel:

• Kernel matrix: 𝐾 𝑤" ≽ 0 if 𝑚 is sufficiently large 
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f(xi;w
∗) ≈ yi, i = 1, . . . , n

min
w∈Rm

L(w) :=
1

2

n∑

i=1

(f(xi;w)− yi)
2

Kij(w) = 〈∇wf(xi;w),∇wf(xj ;w)〉

Kij(w0) = Ew0∼N(0,Im)〈∇wf(xi;w0),∇wf(xj ;w0)〉



Key insight behind the scene 

• Gradient flow: 

• PL* condition 
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dw(t)

dt
= −∇L(w(t))

du(t)

dt
= −K(w(t))u(t)

u(t) = f(w(t);x)− y

‖∇L(w)‖2 = (f(w;x)− y)TK(w)(f(w;x)− y)

≥ 2 · λmin(K(w)) · L(w)

𝐾 𝑤& ≽ 𝜇&, for random 𝑤& and large 
𝑚 = 𝑝𝑜𝑙𝑦(𝑛)

𝜆123 𝐾 𝑤 − 𝜆123 𝐾 𝑤& = 𝑂
1
𝑚

,

for 𝑤 ∈ 𝐵

𝐾 𝑤(𝑡) ≻ 𝜇

𝐺𝐷/𝑆𝐺𝐷 converges to global optima



Supervised Learning vs. RL  

• Common features: learning from experience and generalize

◦ SL: given 𝑥$ , 𝑦$ $%&,…,), learn best 𝑓 in hypothesis class

◦ RL: given 𝑠$ , 𝑎$ , 𝑟$ $%&,…,), learn best 𝑄(𝑠, 𝑎) or 𝜋∗ 𝑎 𝑠 = argmin
+
𝑄(𝑠, 𝑎).

• Distinguishing features of RL:

◦ Lack of supervisor, only a reward signal

◦ Delayed feedback

◦ Non-i.i.d. data 

◦ Difficulty with data reuse 
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State value function: 

State-action value function:

Optimal value function:

Optimal policy: 

Bellman equation:

Bellman optimality:

Policy gradient: 

State visitation distribution: 

Notation Recap
MDP (𝑆,𝒜, 𝑃, 𝑅, 𝜇, 𝛾)
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V π(s) = Ea∼π(s)

[

R(s, a) + γEs′∼P (·|s,a)V
π(s′)

]



TD Learning with Neural Network Approximation

• Value function approximation: 𝑥 = 𝜙 𝑠 ∈ 𝑅=

• Symmetric Initialization:

• Neural TD Learning:  

18

>𝑉 𝑥;𝑊, 𝛼 =
1
𝑚
E

$%&

,
𝛼$ 𝑊$

-𝑥 .

hidden layer

input layer
output

𝑥 >𝑉(𝑥;𝑊, 𝛼)

𝑊 𝑡 + 1 = 𝑊(𝑡) + 𝜂/ 𝑟 𝑥/ + 𝛾 >𝑉/ 𝑥/.& − >𝑉/ 𝑥/ ∇0 >𝑉/(𝑥/)

𝛼$ = −𝛼$.,/"∼ 𝑈𝑛𝑖𝑓 −1,1 , 𝑊$ 0 = 𝑊$.,/" 0 ∼ 𝑁(0, 𝐼!)



Optimization Perspective 

min
#

𝐸$∼& 8𝑉 𝑥;𝑊, 𝛼 − 𝑟 𝑥 + 𝛾𝐸$4|$ 8𝑉 𝑥(;𝑊, 𝛼
)

• TD Learning can be viewed as a stochastic semi-gradient method. 
• With neural network approximation, the MSBE objective  becomes non-convex. 
• Approximation error between 8𝑉 𝑥;𝑊, 𝛼 and true value function 𝑉(𝑥).  
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Goal:  Can we achieve >𝑉- − 𝑉 ≤ 𝜖 ? 
• Sample complexity 𝑇 (required number of samples)?
• Network complexity 𝑚 (required number of neurons)? 

Minimizing mean-square Bellman error (MSBE): 



Existing Theory 

• TD Learning with linear function approximation 
◦ Finite-time analysis of TD with projection: [Bhandari et al., 2019] 
◦ Finite-time analysis of TD without projection:  [Srikant & Ying, 2019]
◦ Finite-time analysis under i.i.d. setting:  [Dalal et al., 2018], [Lakshminarayanan & Szepesvári, 2018]

• (Stochastic) Gradient Descent with two-layer overparametrized neural network
◦ Infinite-width limit (𝑚 → ∞): [Jacot et al., 2018], [Chizat et al., 2019]
◦ GD with polynomial width:  [Du et al., 2018] , [Oymak and Soltanolkotabi, 2019], [Arora et al., 2019]
◦ SGD with polylogarithmic width (classification only): [Ji & Telgarsky, 2020]
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Key Challenges:
• Massive overparameterization (poly in |𝑆|) is not suitable for TD Learning 
• Drift of the network parameter ||𝑊 𝑡 −𝑊 0 ||



Neural Tangent Kernel 

• Recall 8𝑉 𝑥;𝑊, 𝛼 = *
+
∑,-*+ 𝛼, 𝑊,

.𝑥 /

• Neural Tangent Kernel: 
𝐾 𝑥, 𝑦 = 𝐸05∼1(", 46)[𝐼 𝑤"

.𝑥 ≥ 0 𝐼 𝑤".𝑦 ≥ 0 𝑥.𝑦]
◦ The NTK is a universal kernel.
◦ The corresponding RKHS is dense in the continuous function space defined on a compact set. 

• Assumption: 𝑉 𝑥 = 𝐸 𝑣. 𝑤" 𝑥 ⋅ 𝐼 𝑤".𝑥 ≥ 0 , where sup
0

𝑣(𝑤) ) ≤ �̅� < ∞. 
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>𝑉 𝑥;𝑊, 𝛼 ≈ >𝑉 𝑥;𝑊 0 , 𝛼 +
1
𝑚
E

$%&

,
𝛼$𝐼 𝑊$

- 0 𝑥 ≥ 0 𝑥-[𝑊$ −𝑊$(0)]

>𝑉 𝑥;𝑊, 𝛼 ≈
1
𝑚
E

$%&

,
𝛼$𝐼 𝑊$

- 0 𝑥 ≥ 0 𝑥-𝑊$
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Neural TD Learning with Regularization 

Regularization: Early stopping
𝑇 = 𝑇(�̅�, 𝜖, 𝛿)

𝑊 𝑡 + 1 = 𝑊 𝑡 + 𝜂 ⋅ 𝑔/

Regularization: Max-norm 
||𝑊$ 𝑡 −𝑊$ 0 ||" ≤ 𝑅/ 𝑚

𝑊$ 𝑡 + 1 = Proj2 0! 3 ,4 [𝑊$ 𝑡 + 𝜂 ⋅ 𝑔/$]

Algorithm 1: Projection-Free NTD Algorithm 2: Max-Norm NTD

𝑊$ 0

𝑊$ 𝑡

𝑊$ 𝑡 + 1/2

𝑊$ 𝑡 + 1

𝑅/ 𝑚

(Ji & Telgarsky, ’19, Li et al., ‘20) for SL (Srivastava, ‘14, Goodfellow, ’13) for SL
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Convergence of Neural TD  

Assumption: 𝑉( ⋅ ) ∈ 𝐹1.6 (dense in cont. functions over a compact state space (Ji et al., ’19))

𝑬 8𝑉. − 𝑉 &1ℰ ≤ 𝜖 where 𝑷 ℰ > 1 − 𝛿

Algorithm 1: Projection-Free NTD

Sample complexity: 𝑇 = 𝑝𝑜𝑙𝑦 �̅� /𝜖#

Network width: 𝑚 = 𝑝𝑜𝑙𝑦 �̅� /𝜖#

Sample complexity: 𝑇 = 𝑝𝑜𝑙𝑦 𝑅 /𝜖7
Algorithm 2: Max-Norm NTD

Network width: 𝑚 = 𝑝𝑜𝑙𝑦(𝑅)/𝜖%

Projection radius: 𝑅 > �̅�

Here �̅� is the bound of the NTK norm of 𝑉 ⋅ .



Highlight

• Some regularization + modest overparameterization à convergence to true value function
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More expressive power Faster convergence

Projection-free NTD 
(Early stopping)

Max-norm NTD 
(ℓ5-reg)

[Cai et al., ’19]
(ℓ"-reg.)



Lyapunov Drift Analysis 

• Minimum norm solution:

Z𝑊 = [𝑊, 0 + 𝛼,
8 #8 "

+
],∈[+]

Note that ∇8𝑉 𝑥;𝑊 0 , 𝑎 . Z𝑊 → 𝑉 𝑥 , 𝑎𝑠 𝑚 → ∞.

• Lyapunov function:  𝐿 𝑊 𝑡 = 𝑊 𝑡 − Z𝑊 )
)

• Stopping time: 𝜏 = inf 𝑡 > 0: 𝑊, 𝑡 −𝑊, 0 ) >
<
+
for some 𝑖 .

• Drift bound:
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𝐸= 𝐿 𝑊 𝑡 + 1 − 𝐿 𝑊 𝑡 ≤ −2𝜂 1 − 𝛾 8𝑉= − 𝑉 &
) + O 𝜂) + > ?@9A@ :

+
, for 𝑡 < 𝜏



Drift Bound  

• Recall 𝑊 𝑡 + 1 = 𝑊 𝑡 + 𝜂𝑔=,

• Bound the second term 
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𝑊 𝑡 + 1 − g𝑊 "
" = 𝑊 𝑡 − g𝑊 "

" + 2𝜂𝑔/- 𝑊 𝑡 − g𝑊 + 𝜂" 𝑔/ "
"

𝐸[𝑔/- 𝑊 𝑡 − g𝑊 ]

= 𝐸 𝛿/ ⋅ >𝑉/ 𝑥/;𝑊 𝑡 − 𝑉 𝑥/ + 𝑉 𝑥/ − ∇>𝑉/ 𝑥/;𝑊 0 - g𝑊 + ∇>𝑉/ 𝑥/;𝑊 0 - g𝑊 − ∇>𝑉/ 𝑥/;𝑊 𝑡 - g𝑊

= 𝐸[𝛿/ ⋅ ∇0 >𝑉/ 𝑥/;𝑊(𝑡) - 𝑊 𝑡 − g𝑊 ]

≤ − 1 − 𝛾 >𝑉/ − 𝑉 6
" ≤ 𝑂

�̅�
𝑚

≤ 𝑂
𝜆
𝑚

𝑔! = 𝛿! ⋅ ∇" &𝑉! 𝑥!;𝑊(𝑡) ,
𝛿! = 𝑟 𝑥! + 𝛾 &𝑉! 𝑥!#$ − &𝑉! 𝑥! .



Extensions and Open Questions 

• Extensions of Neural TD Learning 
◦ Markovian setting
◦ Extended feature vector 
◦ Smooth activation functions 

• Open Questions
◦ Beyond two-layers, can we achieve reduced overparameterization bound? 
◦ Beyond two-layers, under what conditions can we achieve global convergence?
◦ Is early stopping or regularization necessary? 

◦ Extension to deep Q-learning to find optimal policy? 
◦ How to integrate RL with general nonlinear function approximation in a more principled manner? 
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Optimization-based RL Algorithms 

• Bellman-residual-minimization methods
◦ Residual gradient algorithm [Baird, 1995] 

◦ Gradient TD [Sutton et al., 2009]

◦ Least-Squares Policy Iteration [Antos et al., 2006]

◦ SBEED [Dai et al., 2018]

• Linear programming-based methods 
◦ Stochastic primal-dual method [Chen & Wang, 2016] [Lee & He, 2018]

◦ Dual actor-critic [Dai et al., 2017]

◦ Primal-dual stochastic mirror descent [Jin & Sidford, 2020]

◦ Logistic Q-learning [Bas-Serrano et al., 2021]

• Policy gradient methods
◦ Natural policy gradient method (NPG) [Kakade, 2001]

◦ Trust region policy optimization (TRPO) [Schulman et al., 2015]
◦ Proximal policy optimization algorithm (PPO) [Schulman et al., 2017]

◦ Entropy-regularized policy gradient methods and actor-critic algorithms 
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Rich theory and gradient-based 
algorithms for nonconvex optimization

Exploitation of off-policy data

Adaptation to neural network 
approximation

Extensibility (safety, multi-agent RL, etc)



Revisit Bellman Optimality Equation 

• Recall the Bellman optimality equation: 

• Equivalently: 

◦ The 𝑚𝑎𝑥-operator is highly nonsmooth and causes instability when function approximation is used.  
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Smoothing the 𝑚𝑎𝑥-Operator

• Introduce entropic regularization to Bellman optimality equation, 

◦ 𝐻 𝜋, 𝑠 = −∑𝜋 𝑎 𝑠 log 𝜋 𝑎 𝑠 is the entropy,  𝜆 > 0 is the smoothness parameter 

• The smoothed Bellman operator is also a 𝛾-contraction. 

• Smoothing bias: 𝑉∗ 𝑠 − 𝑉< 𝑠 C ≤ <⋅E
*AF

.

• The corresponding 𝑉<, 𝜋< satisfies the smoothed Bellman equation: 
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Bellman Residual Minimization

• Minimizing mean-squared smoothed Bellman error: 
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(Min-Max SO):

[Dai et al., ICML 2018]

Convergent off-policy RL algorithm 
with nonlinear function approximation 

(CSO): 

HopperSwimmer

Caveat:  require solving nonconvex-(non)concave min-max optimization!



Linear-programming-based Method   
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• LP formulation: 

(Primal policy):

(Dual policy):

[Dai et al., 2017; Donghwan and H., 2019]

Convergent off-policy RL algorithm 
w/o function approximation 

(Min-Max SO):

Caveat:  lack of duality;  require solving nonconvex-(non)concave min-max optimization!
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Summary

• Understanding the convergence and generalization of deep RL  from modern deep learning theory 
• Principled approaches for RL with neural network approximation 

Open Questions

• Benefits of depth and different architectures?
• Nonconvex min-max optimization? 
• Regularization and sample complexity?

Value-based methods
• Neural TD learning 
• Neural Q-learning

Optimization-based methods 
• Bellman Residual Minimization
• Linear Programming

Policy-based methods 
• Neural Policy Gradient
• Neural Actor Critic
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