EPFL Summer School on Data Science, Optimization and Operations Research
August 15-20, 2021

Lecture 4: RL from Deep Learning Perspectives

Niao He, D-INFK, ETH Zurich

Recap: Reinforcement Learning Approaches

- Value-based RL

o Estimate the optimal value function Q*(s, a)
\/alue-based Policy-based o Example: Q-learning

« Policy-based RL
o Search directly the optimal policy T*(- |s)
o Example: Policy Gradient Method

Model-based

« Model-based RL

o First estimate the model P, R and then do planning

Outline of Lecture Series

Focus:
Provably convergent “deep” RL methods

/

/
o RL with nonlinear function approximation
o RL with neural network approximation

/

Lecture 4 ' RL from Deep Learning Perspectives
- Deep RL

The Grand Challenge

e La I'SE€ state space, policy space

State s
Action a

Learn parameter
6 € R?

(d < |S]]|A])

D

Using neural network approximation seems a must.
Al = RL + DL?

Neural Networks

- Nested composition of (learnable) linear transformation with (fixed) nonlinear activation functions

A single-hidden-layer neural network f(x;w, o) = Z 1oz,ia(wZT:z:)
1=

Activation function o (+):

%?9?9
mre

ldentity: o(u) = u

1
1+exp(—u)
Tanh: o(u) = tanh(u)

Rectified linear unit: o(u) = max(0, u)

Sigmoid: o(u) =

o/

Input layer hidden layer output
(m nodes)

Deep Neural Networks

- More hidden layers, different activation functions, more general graph structure

Feed forward network Convolutional network

Residual network Recurrent network

t t t t
e DY m ﬁ ﬂ<t_1> a<t> a<t+1>
<0> R
x - ¢ - - N o O O o
" @)
t t t t
z<1>J x<2>‘ Z<t> p<t+1>

Representation Power - why neural networks?

Shallow networks are universal

Benefits of depth
approximators

Any continuous function on bounded domain - A deep network cannot be approximated by a
can be approximated arbitrarily well by a one- reasonably-sized shallow network.
hidden layer network with nonconstant and

increasing continuous activation function.

There exists ReLU networks with poly(d) nodes in 2
[Cybenko, 1989; Hornik et al.,1989; Barron, 1993]

hidden layers which cannot be approximated by 1-
hidden-layer networks with less than 2¢ nodes.

[Eldan and Shamir, 2015]
Number of neurons can be large.

There exists a function with O(L?) layers and width 2
which requires width 0(2%) to approximate with
O (L) layers. [Telgarsky 2015,2016]

Training with Neural Networks

Overfitting

regularization techniques
(dropout, early stopping, etc.)

¢ Gradient vanishing or exploding
4 ReLU activation, gradient clipping
_ ¢ Nonconvexity

noisy gradient

lll-conditioning

. adaptive gradient methods
(Adam, AdaGrad, RMSprop, etc.)

Deep Reinforcement Learning

Using (deep) neural networks to represent
> Value function

o Policy

° Model

Value-based Policy-based

N4
SN
20
> «'{< f//{
2B
X%

N
.Az'
®

Model-based

Deep Value-based and Actor-critic RL

« Deep Q-Learning
Q" (s,a) = Q(s, a; w)

min L(w) := K¢ 4.5 r)up [(7“ + 7y max Q(s',a';w™) — Q(s, a;w))ﬂ

w

: @ current) Process 2 &rge/t/
process 1: data collection Wtarget update arameters
/
(87 a, Sl,T) e ¢ L ¢)
/ dataset of transitions = ——
(“replay buffer”) —

[AN

m(als) (e.g., e-greedy) - - Mrevri(;t old data ﬁ

- Stabilizing training: (prioritized) experience replay, target network, double learning, dueling network.

Figure source: EE-618 at EPFL 10

The Deadly Triad?

Network capacity

% %
& P}
QQ o,
& o3
& o)
x)
S ()
R
Function Approximation Function Approximation

Q-learning with function Practice DQN successfully learnt to play
approximation could diverge. many Atari 2600 games.
[Barto & Sutton, 2018] [van Hasselt et al, 2018]

11

| Wisdom from modern deep learning theory

Risk

"

Classical
regime

Test risk

Modern regime

Interpolation threshold

Capacity

Classical (under-parameterized)

Modern (over-parameterized)

Generalization curve

U-shaped

Descending

Optimal model

Bottom of U (hard to find)

Any large model (easy to find)

Optimization landscape:

Locally convex

Minimizers locally unique

Not locally convex
Manifolds of minimizers
Satisfies PL* condition

GD/SGD convergence

GD converges to local min
SGD w. fixed learning rate does

not converge

GD/SGD converge to global min
SGD w. fixed learning rate
converges exponentially

Adversarial examples

7

Unavoidable

Transition to linearity

Wide networks w. linear last layer

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the prism of Interpolation, 2021.

12

The optimization landscape

Local minima Global minima

(a) Under-parameterized models (b) Over-parameterized models

Extensive work:
Jacot et al. 2018; Li and Liang 2018; Du et al. 2018; Allen-Zhu et al. 2018; Oymak and Soltanolkotabi
2019; Zou et al. 2018; Chizat and Bach 2019; Ji and Telgarsky 2019a; Z. Chen et al. 2019; Arora et al.
2019; Cao and Gu 2020;

Liu et al. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks, 2021.

The neural tangent kernel (NTK)

Supervised learning: find a model parameter that fits the training data

Neural tangent kernel:
Kij(w) = (Vy f(zsw), Vo f(z5;w))
Kij(wo) = EwONN(o,Im)<wa($z'§ wo), Vw f(25;w0))

Kernel matrix: K(wg) = 0 if m is sufficiently large

14

Key insight behind the scene

« Gradient flow:

dw(t)
T —VL(w(t))
u(t) = fw(t);x) —y
du(t)
o = ~K(w(t))u()

PL* condition

IVL(w)[I* = (f(w;x) —)" K (w)(f(w;x) - y)
2.

Amin (K (w)) - L(w)

AVARNI

K(wg) > po, for random wy and large
m = poly(n)

1
Amin(K(W)) - Amin(K(WO)) =0 (\/_m))

forw € B

Kw(t)) > u

GD /SGD converges to global optima

15

Supervised Learning vs. RL

Common features: learning from experience and generalize

o SL:given (x;,¥;)i=1..n, learn best f in hypothesis class

° RL: given (s;,a;,7;)i=1,..n, learn best Q(s, a) or t*(als) = argmin Q(s, a).
a

Distinguishing features of RL:

(e]

(e]

Lack of supervisor, only a reward signal

Delayed feedback State

Non-i.i.d. data

Difficulty with data reuse

Agent

N

Reward

Environment

Action

16

Notation Recap

MDP (S,A, P,R, u,y)

State value function:

‘YT(S) — Eﬂ— [thofth<St, CLt)‘SO = Si|

State-action value function:

Optimal value function:

Optimal policy:

Bellman equation:

Bellman optimality:

Policy gradient:

State visitation distribution:

Q"(5,0) =Ex [3°" 3"R(s1,a0)[s0 = 5,00 = a

V*(s) :=max V" (s), Q*(s,a):= max Q" (s,a)

™

7" (s) = argmax Q" (s, a)
acA

Vﬂ<5> = EQNW(S) [R(S, CL) + nys/Np(.|3,a) Vﬂ(slﬂ

Q*(s,a) = R(s,a) + Ey|s.q [’y max Q* (s, a’)]

VT 1]
00 1 _W]Eswdﬁ",wwe(.b) [Q G(S,a)Vlogm(a|s)]

O

@5 (5) = Bagmp |(L =)D V*P(sk = slso, m)]

k=0

TD Learning with Neural Network Approximation

- Value function approximation: x = ¢(s) € R? hidden layer

output
SSo] 76,0

) 1 ~m I
Vi, W, a) :\/_TI_”LZ 1ai(Wi x)
1=

« Symmetric Initialization:

a; = —iymyz~ Unif{=1,1}, W;(0) = Wi1p/2(0) ~ N(O, 1)

« Neural TD Learning:

WE+1)=W() +n, [r(xt) + Vvt(xtﬂ) - Vt(xt)]vw 17t(xt)

18

Optimization Perspective

Minimizing mean-square Bellman error (MSBE):

2
min By (P06 W,0) = (1) + VB, 7 (5 W, @)

- TD Learning can be viewed as a stochastic semi-gradient method.
- With neural network approximation, the MSBE objective becomes non-convex.

- Approximation error between V' (x; W,) and true value function V (x).

Goal: Can we achieve||V; — V|| < €?
* Sample complexity T (required number of samples)?
* Network complexity m (required number of neurons)?

Existing Theory

« TD Learning with linear function approximation

> Finite-time analysis of : [Bhandari et al., 2019]
> Finite-time analysis of : [Srikant & Ying, 2019]

o Finite-time analysis under i.i.d. setting: [Dalal et al., 2018], [Lakshminarayanan & Szepesvari, 2018]

« (Stochastic) Gradient Descent with two-layer overparametrized neural network

o : [Jacot et al., 2018], [Chizat et al., 2019]
o : [Du et al., 2018], [Oymak and Soltanolkotabi, 2019], [Arora et al., 2019]
° (classification only): [Ji & Telgarsky, 2020]

Key Challenges:
* Massive overparameterization (poly in |S]) is not suitable for TD Learning
 Drift of the network parameter ||W (t) — W (0)||

20

Neural Tangent Kernel

~ 1 +
Recall V(x; W,) = \/7712{21 ai(WiTx)
VW, a) = V(g W(0),a) + —Z a; I (W (0)x = 0)xT[W; — W;(0)]
. 1 e
V(x; w, CZ) ~ \/—mzizl(lil (WLT(O)X = 0) XTWl'
Neural Tangent Kernel:

K(x,y) = Eyy~no, 1[Il (Wgx = 0)I(wgy = 0)xTy]
o The NTK is a universal kernel.

o The corresponding RKHS is dense in the continuous function space defined on a compact set.

Assumption: V(x) = E| x - I(wlx = 0)], where sup|| |, < ¥ < oo,
w

Neural TD Learning with Regularization

Algorithm 1: Projection-Free NTD

Wi+ =Wt +n-g

Regularization: Early stopping
T =T(,e€,06)

(Ji & Telgarsky, 19, Li et al., ‘20) for SL

Error

Validation set

Training set

0 Early Number of
stopping iterations

Algorithm 2: Max-Norm NTD

W;(t + 1) = Projgw, (o)) Wi () + 1 - gt

Regularization: Max-norm

[|W;(t) — W;(0)]|, < R/\/m

(Srivastava, ‘14, Goodfellow, '13) for SL

Wi(t +1/2)

22

Convergence of Neural TD

Assumption: V(-) € Fyrg (dense in cont. functions over a compact state space (Ji et al., "19))

E||Vr - V| 1¢| < e where P(€) > 1 -5

Algorithm 1: Projection-Free NTD

Sample complexity: T = poly(V)/e®

Network width: m = poly (V) /€®

Here ¥ is the bound of the NTK norm of V().

Algorithm 2: Max-Norm NTD

Sample complexity: T = poly(R)/e*
Network width: m = poly(R)/€?

Projection radius: R > v

23

Highlight

- Some regularization + modest overparameterization = convergence to true value function

State space | Network Sample Error Regularization
width complexity
Cai et al., 2019 General O(1/€°) O(1/€%) € +en | fa-projection
Wang et al., 2019 General O(1/€®) O(1/€%) € + €0 {o-projection
Agazzi & Lu, 2019 Finite poly(|X|) O(log(1/€)) | € poly(|X|) width
Our result General O(1/€%) O(1/€%) € Early stopping
Our result General O(1/€?) O(1/e*) € Max-norm projection
More expressive power : > Faster convergence
Projection-free NTD [Cai et al., "19] Max-norm NTD

(Early stopping)

(£,-reg.)

(foo'reg)

24

Lyapunov Drift Analysis

Minimum norm solution:

W = [W;(0) + a; T]ie[m]
Note that V7 (x; W(0),)T W - V(x),as m = co.

Lyapunov function: L(W(t)) = ||W(t) — W]
Stopping time: T = inf{t > 0: ||[W;(t) — W;(0)]], > \/% for some i}.

Drift bound:

E[L(W(t+ D) - LW ®)] < —2n(1 = |7 = V|| +0(n? +

NVe=Vllx

Vm

),fort<r

25

Drift Bound

Recall W(t +1) = W(t) +ng,,

_ _ — ge = 6 - Vi V(s W (D)),
W+ 1D =WIZ=IIW® —WIIZ +2ngf WE) = W) +121gel3 | 5, 2700 + y0.(en) — 0r0x0).

Bound the second term
Elgi (W (t) —W)]
= E[6; - Yy Ve (xes W ()T (W () — W]
—E [at - (Vt(xt; W(©) = V(x) + V(xe) — V0, (xx; W(0)) W + V0, (xxe; W(0)) W — V0, (xy; W(t))TvT/)]

\ J \ J \ J
| | |

<-a-p|%-v| < 0(;) < O(L)

26

Extensions and Open Questions

- Extensions of Neural TD Learning
o Markovian setting
o Extended feature vector

o Smooth activation functions

« Open Questions
> Beyond two-layers, can we achieve reduced overparameterization bound?
> Beyond two-layers, under what conditions can we achieve global convergence?
° Is early stopping or regularization necessary?
> Extension to deep Q-learning to find optimal policy?

> How to integrate RL with general nonlinear function approximation in a more principled manner?

Optimization-based RL Algorithms

Bellman-residual-minimization methods
° Residual gradient algorithm [Baird, 1995]
° Gradient TD [Sutton et al., 2009]
° Least-Squares Policy Iteration [Antos et al., 2006]
° SBEED [Dai et al., 2018]

Linear programming-based methods
o Stochastic primal-dual method [Chen & Wang, 2016] [Lee & He, 2018]
° Dual actor-critic [Dai et al., 2017]
° Primal-dual stochastic mirror descent [Jin & Sidford, 2020]

° Logistic Q-learning [Bas-Serrano et al., 2021]

Policy gradient methods

° Natural policy gradient method (NPG) [Kakade, 2001]
° Trust region policy optimization (TRPO) [Schulman et al., 2015]
° Proximal policy optimization algorithm (PPO) [Schulman et al., 2017]

° Entropy-regularized policy gradient methods and actor-critic algorithms

Rich theory and gradient-based
algorithms for nonconvex optimization

Exploitation of off-policy data

Adaptation to neural network
approximation

Extensibility (safety, multi-agent RL, etc)

28

Revisit Bellman Optimality Equation

- Recall the Bellman optimality equation:

V*(s) = max [R(s5,a) + 1By [V ()]

- Equivalently:

%4 -]anﬂ'-s R)]Es’saV* /
= e (1) [B(s,0) + 1Esjs [V (s))]

o The max-operator is highly nonsmooth and causes instability when function approximation is used.

29

Smoothing the max-Operator
 Introduce entropic regularization to Bellman optimality equation,

Vals) = max (Bann(ls) [R(s:) +1EwjsalVA(5)]] + A+ Hm, 5))

_)\log (Z exp (R(S,CL) + 7%8%3,&“&(“)]))

acA

o H(m,s) =—) n(als)logm(als) is the entropy, 4 > 0 is the smoothness parameter

- The smoothed Bellman operator is also a y-contraction.

Ac

1-y

 The corresponding (I/;, 7;) satisfies the smoothed Bellman equation:

- Smoothing bias: ||V*(s) — VA(S)HOO <

V(s) = R(s,a) +VEs 54V (s)] — A -logm(als),Va € A.

30

Bellman Residual Minimization

- Minimizing mean-squared smoothed Bellman error:

Swimmer

(CSO): I‘I/l’igl E‘S’a [(R(Sv CL) + 7E5’|s,a[v(3/)] -)\log 7T(a|8) = V(s))2:| J

v

(Min-Max SO): r‘rflinmax U (V,m;v)
T v 1

= Eg a5 [(R(s,a) + 7V (s") — Mogn(a|s) — V(s)) - v(s,a)] — §Es (V% (s, a)]

Swimmer-v1

250 | Legend 3000

2500 4

2000 -

v

Convergent off-policy RL algorithm

Average Episode Reward
=
(=3
<1
o

Average Episode Reward
&
=
=4

w
o
=1

o
L

with nonlinear function approximation 02 o+ 05 05 10 12 03 o3 o7 10 1 1w 17 20

Steps leb Steps

[Dai et al., ICML 2018]

Caveat: require solving nonconvex-(non)concave min-max optimization!

Linear-programming-based Method

« LP formulation:

V,Q

min ,uTV st. Qo <V, aP,V+R,=0Q,, aEAJ

\ 4

in- . min max Ljys(x;
(Min-Max SO): i max L (z;y)

(Primal policy): 7, (s,a) = argmin Q (s)
acA

(Dual policy): 75(s,a) o< \:(s)

=p'V+p" M@PV+R-Q)+ X (Q— (14 ®s)V)

Environment Dual-AC PPO TRPO
Pendulum —155.45 | —266.98 | —245.11
InvertedDoublePendulum | 8599.47 | 1776.26 | 3070.96
‘ Swimmer 234.56 223.13 232.89
Hopper 2983.79 | 2376.15 | 2483.57
HalfCheetah 3041.47 | 2249.10 | 2347.19
Convergent off-policy RL algorithm Walker 4103.60 | 3315.45 | 2838.99

w/o function approximation

[Dai et al., 2017; Donghwan and H., 2019]

Caveat: lack of duality; require solving nonconvex-(non)concave min-max optimization!

Summary

« Understanding the convergence and generalization of deep RL from modern deep learning theory
« Principled approaches for RL with neural network approximation

Value-based methods Optimization-based methods Policy-based methods

* Neural TD learning * Bellman Residual Minimization
* Neural Q-learning * Linear Programming

* Neural Policy Gradient
* Neural Actor Critic

Open Questions

- Benefits of depth and different architectures?
- Nonconvex min-max optimization?

- Regularization and sample complexity?

33

Reference
- [Cayci, Satpathi, H., Srikant, 2021]
. arXiv preprint arXiv:2103.01391, 2021.

- [Dai et al., 2018] . ICML
2018.

- [Du et al., 2019] Gradient Descent Provably Optimizes Over-parameterized Neural Networks. ICLR 2019.

- [Fan et al., 2020] A Theoretical Analysis of Deep Q-Learning. arXiv: 1901.00137, 2019.

http://arxiv.org/abs/2103.01391
http://proceedings.mlr.press/v80/dai18c/dai18c.pdf

