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Recap: Reinforcement Learning Approaches

- Value-based RL

o Estimate the optimal value function Q*(s, a)

o Example: Q-learning

Value-based Policy-based

« Policy-based RL
o Search directly the optimal policy T*(- |s)
o Example: Policy Gradient Method

« Model-based RL

> First estimate the model P, R and then do planning

Model-based

What are the convergence behaviors of these algorithms?



Outline of Lecture Series

Lecture 2

RL from Control Perspectives
- Value-based RL

Focus:
Unified control-theoretic analysis of model-
free value-based methods

o TD learning
o Qlearning
o Double Qlearning

o Variants w/o function approximation

Challenge:

Not stochastic gradient methods
(stochastic semi-gradient)

Not i.i.d. sampling (Markovian data)
Varying dynamics (linear or nonlinear)



Outline of Lecture Series
Focus:

Unified control-theoretic convergence analysis
of model-free value-based methods

o TD learning

J
RL from Control Perspectives o Qlearning
Lecture 2
- Value-based RL _
y o Double Qlearning
o Variants w/o function approximation
J

/ Stochastic Approximation algorithms:

Xiy1 = X + ap(hlx,) + €x41), k= 0,1, ...




Notation Recap

. MDP (S,A, P, R, 1, )

State value function: e =1 [ZZovtR(st’ ar)lso = 8}
State-action value function: Q" (s,a) = E, [Zzoth(st, ai)|so = s,a9 = a}
Optimal value function: V(s) = max V7(s), Q(s,a) := max Q" (s, a)
Optimal policy: T (s) = argmax Q" (s, a)
Bellman equation: V7(5) = Egun(s) [R(5,0) + YEsrnp(|s,a) V7 (5")]

Bellman optimality: Q" (s,a) = R(s,a) + Eg|sq [7 g Q" (s, a’)]




The ODE Method
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The ODE Method: Key Idea

Xk+1 = X + ag(h(Xy) + €x41) J"

!

d R & ‘
ODE:  —x; = h(x) J £ { |
Asymptotic stability J .

Dynamical system, % x; = h(x;), is globally asymptotically stable if x; — x* for any x,.



The ODE Method: Borkar and Meyn Theorem

SA: Xpi1 = Xy + ap(h(Xy) + €x41) J

[Borkar and Meyn Theorem, 2000]

Under the following conditions:
a) Global Lipschitz continuity of the mapping h
b) Robbins-Monro stepsize: Ya; = ©,Yai < ©

c) Bounded noise of martingale difference: E[||l€x+11121Gx] < Co(1 + || X, |%), Vk =0
h(cx)
(o

d) : X = hoo(xp) == lim
Cc— 00
6) :Xt = h(xt)

we have X}, — x* as k — oo,




Stability of Linear Systems

« Linear System:

The origin is an asymptotically stable equilibrium point A is Hurwitz.
Or equivalently, there exists M = MT > 0 such that ATM + MA < 0.

o A matrix is Hurwitz if all eigenvalues have strictly negative real parts.

o Lyapunov function: V(x) = x" Mx, % =x; (ATM + MA)x, <0, V(x;) - 0.

o Applications to TD-learning variants: TD(0), TD(A), GTD, TDC, A-TD, D-TD, etc.



Convergence of TD-learning

- TD-learning with Linear Function Approximation [Tsitsiklis & Van Roy, 1997]

Or+1 = O + (i) [1(Sk, ag) + VP (Skr1)" O — P(sk)" 0]
¥
d x\ __ *
E(Qt_g ) =A(6, —0")

A = DTD(yP™ — )@ is Hurwitz if ® is full rank.

o T = [¢p(1), 9 (2), ..., p(ISD]
o PT(s,s") =Y ,P(s'|s,a)r(als)
o D =diag(d),d = dPT, state stationary distribution
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Convergence of Double TD-learning

- Double TD-learning with Linear Function Approximation [Lee & He, 2019]

9115+1 = 91’? + “k¢(5k)[7‘(3k; ay) + V¢(Sk+1)T‘9f<4 - ¢(Sk)THI§] + 5(9124 - 91’5)

.

4 (6, —6%) = A6, —6"), A=B +CTBC,with B = [

04,1 = 08 + aed (5[ (10 ax) + ¥ (se1)TOF — d(si)TOA] + 8(OF — 6 J

—dTDd )/(DTDP”CD] C=l0 I]
61 -0l ’ I O

A is Hurwitz if @ is full rank, 6 > 0. y

. Under Robbins-Monro stepsize and assume the Markov chain under policy m is ergodic,
we have

0, = 0" almost surely, as k — oo,
Here 8" is the solution of the projected Bellman equation: ®6 = I1(R™ + yP™®0).
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Stability of Nonlinear Systems

« Nonlinear System:

[Khalil, 2002]

The origin is unique, globally asymptotically stable if there exists a twice
differentiable Lyapunov function V' (x) such that

killx|[* < V(x) < ky|lx[|*

dv
—h(0) < —kslx]|

for some positive constants a, k4, k-, k5.

o Sufficiency but not necessity.
o Application: tabular Q-learning [Borkar & Meyn, 2000]
o Application: Q-learning with linear function approximation [Melo et al., 2008] [Wang & Giannakis, 2020]
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Stability of Linear Switching Systems

« Linear switching system:

d
Ext = Ag Xt

o coupling between continuous dynamics and discrete events (switching)
o g;: switching signal € {1,2,---,M}; {A4, ..., A} subsystem matrices

o g, = o(x;): state-feedback switching signal

[Lin and Antsaklis, 2009]

The origin is the unique globally asymptotically stable equilibrium point
there exists a full column rank matrix L and a family of NRD matrices {4, ..., Ay}
such that

LA; = AzL,Vo € {1,2,..., M}.

Negative Row Dominant Diagonal (NRD) matrix A:  a;;+ Zj¢i|aij| < 0,Vi.

13



Switching System Model of Q-Learning

« Q-learning

Qr+1(Sk, ag) = Qr (i, ag) + o (r(sk, ax) +v rr}f}X Qr(Sk+1,a") — Q(Sk, ax))

- Dynamical system l

d
—(0: = Q) = (YDPIlyg, = D) (Qc = @) + yDP(llg, = 1z)Q"

(e]

Greedy policy: 1y, (s) = argmax,Q.(s, a)

(e]

Diagonal elements of D : state-action distribution

(e]

P = , P,=transition probability matrix for taking action a

Fa

o My :=1[ Ty -], [Fa](s,a’) = 1if n(s) =a andO0 otherwise

14



Switching System Model of Q-Learning

Q-learning

Qr+1(Sk, ag) = Qr (i, ag) + o (r(sk, ax) +v max Qr(Sk+1,a") — Q(Sk, ax))

Dynamical system l

d
—(0: = Q) = (YDPIlyg, = D) (Qc = @) + yDP(llg, = 1z)Q"

Affine switching system l

d
axt — Aa(xt)xt + bcr(xt)

© xe = Qe — Q' 0 () = ¥(mg,), g, (s) = argmax4Qc(s, @)
o 1: deterministic policy - integer

15



Stability Analysis: Upper and Lower Comparison Systems

Upper comparison system (linear switching system)

d *\ *
(0= Q") = (YDPIIyy, = D) (Q: — Q")

=

Original affine switching system

d
—(0: = Q) = (YDPIlyy, = D) (Qc = Q) + yDP(llg, = 1)Q"

=
Lower comparison system (linear system)

d *\ *
—(0: = Q") = (yDPIly. = D) (@ = Q")

Note A, = yD(PIl, — 1) is NRD : [A;];; + ¥ 4| [As]ij| < v — 1 <0, V0.

16



Stability Analysis: Vector Comparison Principle

dt— f(xt)

Linear system
A is Hurwitz

S

J
8

d B d =,
Ext = f(xe) Ext = f(x¢)

IA
IA

N

Linear switching system
A, isNRD

l‘l’
8
xt—>0\ xr =0

[Vector Comparison Principle]

Iffand f are globally Lipschitz continuous, fis WENE
monotone increasing, then

F<fxo<Xy=x, <Xx,Vt=0.

17



Asymptotic Stability and Convergence

Theorem. Under Robbins-Monro stepsize and ergodicity assumption,

Qi — Q" almost surely, as k — oo,

« Other proofs
o The original proof [Watkins and Dayan, 1992]
o Stochastic-approximation-based approach [Jaakkola et al., 1994] [Tsitsiklis, 1994]

o Finite-time analysis: [Szepesvari, 1998][Even-Dar & Mansour, 2003]
o Recent work: [Qu & Wierman, 2020] [Li et al., 2020]

- Extensions:
o Target-based Q-learning algorithms

o Q-learning with linear function approximation

18



lllustration
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Q-learning with Linear Function Approximation

« Algorithm:

Ok+1 = Ok + ard (s, g ) [r (s, a) +y U}f}X(q)Qk)(Skﬂ; a") — (®6;)(sk, a)]

« Switching system:

d
0= (y®T DP9, P — ®"DD)6, + PTDR

« New sufficient condition:
—¢; Dp; + )/qbiTDPHanbj < 0,V admissible m

> Under the above condition, we can easily show that for 8;, — 6" as k — oo.
° Less conservative than the Melo’s condition.

20



Deep Q-learning

- The use of target network is pervasive in DQN-like algorithms.

Online variable: 6,
L-times Target variable: 0;

Online variable update

. 0«0 —aVy E (r + ymaxQ(s’,a’;0;) — Q(s,a; 9))2] (_‘ -«

Ot+1 6/,1,0
. 1) Vt+1
Target variable update o ¥

>




Target-based Q-learning

Classical TD learning
(Sutton, 1988)
I

’
/g 2
N o

Target-based TD learning

Lee and H., “Target-based temporal difference learning,” ICML, 2019.
Lee and H., “Periodic Q-learning,” L4DC, 2020.

Standard Q-learning
(Watkins & Dayan 1992)

|
/

/ Averaging Q-learning \

Double Q-learning
(van Hasselt, 2010)

Periodic Q-learning
oo )

Target-based Q-learning

22



The Roadmap

Q-Learning

Nonlinear ODE
Affine switching system

Asymptotic stability

!

Convergence

Qr+1(s,a) = Qi (s, @) — o (r +y max Qr(s',a") — Qx(s,a))

d
7 (Q: = Q") = (YDPlly, — D) (Qc = Q") +yDP(lly, — 1:)Q"

X = x*

23



Dynamical Systems Perspective for RL

RL algorithms Dynamical Systems (continuous/discrete)
d
Xi+1 = X + apH (X, Sk, Ak, Sp+1) 7 Xt = h(xe)

: Time-invariant Linear System
TD learning (tabular, LFA) Markov Jump Linear Sthem

Q learning (tabular, LFA) Switched Affine System

RL with nonlinear FA Nonlinear System

24



Dynamical Systems Perspective for RL

o Systematic and unified analysis

> Rich control theory and tools

> No need for objective/gradients/regularizations
o Characterization of exact behavior

o Tight conditions and weak assumptions

- Challenges:
o Stability of nonlinear systems
o Characterization of non-asymptotic behaviors

25



From Asymptotic Convergence to Asymptotic Covariance

Stochastic approximation algorithm:

Orx+1 = Ok + aph(0y) + €41

Central Limit Theorem:

0, — 67, almostly surely

Vk(6, — 6*) = N(0,2) in distribution

26



Asymptotic Variance and Lyapunov Equation

Consider the linear stochastic approximation
g
Or+1 = 0O + E(A(Yk)ek + b(Yy))

o Assume 8, - 0" =0
> Yy is an irreducible aperiodic Markov chain, A = E[A(Y,,)], 2, = Y E[b(Y)b(Y1)T]

o Define the asymptotic covariance X, = ’lim n E[HRH,Z]

[Kushner and Yin, 2003; Chen et al., 2020]

|f %I + g A is Hurwitz, then X, is the unique solution to the Lyapunov equation:
1

|
(—I+gA)ZOO+ZOO(—I+gAT)+g22b =0

2 2

27



Q-learning vs. Double Q-learning

« Q-learning with LFA:

Or+1 = O + o P(sk, ax) [r (s, ax) + YH (O, Ok, Sk+1) — P (Sk, ar)" 0]

« Double Q-learning with LFA:

01 = 08 + .61 s, ap) [T (S, ar) + YH(OR, 0%, Siv1) — d(s, ar)T 0

91§+1 = 91’? + Sk P (s, ay ) [r (s, ax) + VH(HE» 9124:5k+1) — (s, ak)TGE

T
H(84,05,5) = ¢ (S, argmax ¢(s,a)’ 6, ) 0,,
a

28



Q-learning vs. Double Q-learning

Folklore: double Q-learning helps reduce the maximization bias.

0 /2 O
left @ right
Example

[Sutton and Barto, 2018]

Percentage of Left Actions

Q-Learning Action Selection (¢ =0.1)

(o]
o

(o))
o

=y
o

N
o

/”\\ —— Q-Learning
™ Double Q-Learning

/
[ \ —— Optimal
f

\\7\
~—
0 50 100 150 200 250 300
Episodes
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The Asymptotic Mean-Square Errors of Q-learning Algorithms

Set a;, = %, Oy 27‘9 and assume both Q-learning and Double Q-learning converge. Under mild

conditions, we have

AMSE (64) = AMSE(0%) > AMSE(0) + cog
04 + 68

2

AMSE<

) = AMSE(8)

(e]

Q-learning: AMSE (0) = Ilim kE||0, — 0*||?

2

(e]

Double Q-learning: AMSE (64) := Ilim kE||6?,‘é1 — 0"

2

(e]

Double Q-learning: AMSE (%) := Ilim kE||6F — 6*

61 +05

"k _ g*
2

(e]

A B
67+6 ):= lim kE

k—o0

Double Q-learning with average estimator: AMSE (

30



Proof Sketch
« Lyapunov equation for Q learning

GI+94)%u+3. (GI+gAT) +9%%, =0, A= ODGPI,, — NPT
« Lyapunov equation for Double Q learning:

~®TDP  ydDPIL dT
(GI+gap)30 +32 (31 +g45)+ gD =0, 4= [ T

CI)DPH,T*CI)T —dTDD
. . D __ IV C . 1 .
- Key observation: X5 = C V]’ by uniqueness of X, we have E(V +C) = 2.
- amsE (Z290) = 11e (v + ©) = AMSE(6).

o AMSE(604) = AMSE(68) > AMSE(0) due to Tr(V) = Tr(C).



Baird’s Example

(a) Baird’s Example

- Q
—4— D-Q

—— D-Q with twice the step size
—§— D-Q avg with twice the step size

0

5000 10000 15000 20000
Number of Samples

(¢) Small Random Reward

Mean-Squared Error
|

Mean-Squared Error
[y
=]

~+- Q
—+ DQ

—}— D-Q with twice the step size
—}— D-Q avg with twice the step size

e tereens
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(b) Zero Reward

- Q
—4— D-Q

—— D-Q with twice the step size
—}— D-Q avg with twice the step size

0 5000 10000 15000 20000

Number of Samples

(d) Large Random Reward

Figure 1: Simulation results for Baird’s example. The y-axis is in log scale.
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GridWorld

S

(a) An Example of 3 x 3 GridWorld

35 1 _'I_' Q
£ 10 1 —4— D-Q
= 0 —— D-Q with twice the step size
T 10 —§— D-Q avg with twice the step size
=l
w?- 10
=
< =2
o 10
=
-3
10

0 20000 40000 60000 80000 100000
Number of Samples

(c) 4 x 4 GridWorld

Figure 2: Simulation results for GridWorld with dimensions 3,4, 5. In all the three simulations,

i
=}

Mean-Squared Error
"
<

Mean-Squared Error

-+-Q

—4- D-Q

—— D-Q with twice the step size
—— D-Q avg with twice the step size

0 20000 40000 60000 80000 100000
Number of Samples

(b) 3 x 3 GridWorld

+- 0

—4- DQ

—— D-Q with twice the step size
_—F D-Q avg with twice the step size

\i\‘ik W

0 20000 40000 60000 80000 100000
Number of Samples

(d) 5 x 5 GridWorld

Double Q-learning with twice the step-size and averaged output outperforms Q-learning.
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Sutton and Barto Example

N(—0.1,1)

(B)= "
left right

-F- Q -F- Q

g —4— D-Q 5 —4— DQ
b> 0.6 Iy —— D-Q with twice the step size S —+= D-Quwith twice the step size
fg . / i —§— D-Q avg with twice the step siz = —— D-Q avg with twice the step siz
Do 4 g 2 0.4

= i —

©

« ]

% 0.4 b

> £0.2

= =

s 0.21 = scf--F--F-I--3--F--F-F-F-3--F--F--F-J--F--F--F--

< =

=) © 0.01— r . . .

S . . . . . & 0 50 100 150 200
= 0 50 100 150 200 Number of Episodes

Number of Episodes
(b) In a setting with neural network function approxima-

(a) In a tabular setting with M = 8 tions and M — 10°
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Observations

Is Double Q learning provably more efficient than Q-learning?

« Both from theoretical and numerical results:

(o)

Double Q-learning with the same stepsize converges slower than Q-learning;

Double Q-learning with twice stepsize can converge as fast as and even faster than Q-learning,
but suffers from larger variance;

When using average estimator as the output, Double Q-learning with twice stepsize obtains
both faster convergence rate and smaller mean-squared error.
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From asymptotics to non-asymptotics

Asymptotic Convergence

* TD-learning with LFA
[Tsitsiklis & Van Roy, 1997]

* Double TD-learning with LFA
[Lee & He, 2019]

* Synchronous Q-learning
[Borkar & Meyn, 2000]

* Asynchronous Q-learning
[Jaakkola et al.,1994][Tsitsiklis, 1994] [Lee & He, 2020]

* Q-learning with LFA
[Melo, Meyn, & Ribeiro, 2008] [Lee & He, 2020]

* Greedy-GQ algorithm
[Maei et al., 2010]

Finite-time
Convergence

TD-learning with LFA

[Srikant & Ying, 2019]
[Dalal et al., 2018] [Bhandari et al., 2019]
[Lakshminarayanan & Szepesvari, 2018]

Neural TD-learning
[Cai et al, 2019; Cayci et al., 2021]

Asynchronous Q-learning

[Szepesvari, 1998][Even-Dar & Mansour, 2003]
[Qu & Wierman, 2020] [Li et al., 2020]

Q-learning with LFA
[Chen et al., 2019] [Wang & Giannakis,2020]

Double Q-learning
[Xiong et al, 2020]

Neural Q-learning
[Xu and Gu, 2020]

Tight Error Bound

TD-learning with LFA

[Hu & Syed, 2019]
[Devraj & Meyn, 2017]
[Chen et al., 2020]

Q-learning & Relative Q-learning
[Devraj & Meyn, 2020]

Double Q-learning
[Weng et al., 2020]
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Summary

Existing rich control theory can help

« Build theoretical convergence of value-based RL algorithms
- Provide unified framework, tight characterization and error bounds
- Potentially design principled, data-efficient, robust, and extensible RL algorithms

Open Questions

- Nonlinear function approximations?
- Policy gradient methods?

- Global optimality?
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