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Recap: Reinforcement Learning Approaches  

• Value-based RL  
◦ Estimate the optimal value function 𝑄∗(𝑠, 𝑎)
◦ Example: Q-learning 

• Policy-based RL
◦ Search directly the optimal policy 𝜋∗(⋅ |𝑠)
◦ Example: Policy Gradient Method

• Model-based RL 
◦ First estimate the model 𝑃, 𝑅 and then do planning 

What are the convergence behaviors of these algorithms? 

Value-based Policy-based

Model-based

Actor
Critic
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Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Introduction to RL 

RL from Control Perspectives
- Value-based RL 

RL from Optimization Perspectives
- Policy-based RL 

RL from Learning Perspectives
- Deep RL

RL from Game Perspectives

o TD learning 

o Q learning 

o Double Q learning 

o Variants w/o function approximation 

Outline of Lecture Series 
Focus: 
Unified  control-theoretic analysis of model-
free value-based methods

Challenge:
- Not stochastic gradient methods 

(stochastic semi-gradient)
- Not i.i.d. sampling (Markovian data)
- Varying dynamics (linear or nonlinear) 
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Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Introduction to RL 

RL from Control Perspectives
- Value-based RL 

RL from Optimization Perspectives
- Policy-based RL 

RL from Learning Perspectives
- Deep RL

RL from Game Perspectives

o TD learning 

o Q learning 

o Double Q learning 

o Variants w/o function approximation 

Outline of Lecture Series 
Focus: 
Unified  control-theoretic convergence analysis 
of model-free value-based methods

Stochastic Approximation algorithms:

𝑥!"# = 𝑥! + 𝛼! ℎ 𝑥! + 𝜖!"# , 𝑘 = 0, 1, …



State value function: 

State-action value function:

Optimal value function:

Optimal policy: 

Bellman equation:

Bellman optimality:

Notation Recap

• MDP (𝑆,𝒜, 𝑃, 𝑅, 𝜇, 𝛾)
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V π(s) = Ea∼π(s)

[

R(s, a) + γEs′∼P (·|s,a)V
π(s′)

]
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The ODE Method
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The ODE Method: Key Idea

𝑋!"# = 𝑋! + 𝛼!(ℎ 𝑋! + 𝜖!"#)

ODE:      $
$%
𝑥% = ℎ 𝑥%

Asymptotic stability

Dynamical system, !
!"
𝑥" = ℎ 𝑥" , is globally asymptotically stable if 𝑥" → 𝑥∗ for any 𝑥$.



The ODE Method: Borkar and Meyn Theorem 

Under the following conditions:
a) Global Lipschitz continuity of the mapping ℎ
b) Robbins-Monro stepsize: ∑𝛼! = ∞,∑𝛼!& < ∞
c) Bounded noise of martingale difference: 𝐸 𝜖!"# & 𝐺! ≤ 𝐶' 1 + 𝑋! & , ∀𝑘 ≥ 0

d) Asymptotic stability of the limiting ODE ∶ 𝑥̇% = ℎ( 𝑥% ≔ lim
)→(

+ ),
)

e) Global asymptotic stability of the original ODE: 𝑥̇% = ℎ 𝑥%
we have 𝑋! → 𝑥∗ as 𝑘 → ∞.
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SA:   𝑋%&' = 𝑋% + 𝛼%(ℎ 𝑋% + 𝜖%&')

[Borkar and Meyn Theorem, 2000]



Stability of Linear Systems

• Linear System:

◦ A matrix is Hurwitz if all eigenvalues have strictly negative real parts.

◦ Lyapunov function: 𝑉 𝑥 = 𝑥.𝑀𝑥, $/ ,!
$%

= 𝑥%. 𝐴.𝑀 +𝑀𝐴 𝑥% < 0, 𝑉 𝑥% → 0.

◦ Applications to TD-learning  variants: TD(0), TD(𝜆), GTD, TDC, A-TD, D-TD, etc. 

The origin is an asymptotically stable equilibrium point if and only if 𝐴 is Hurwitz.
Or equivalently, there exists 𝑀 = 𝑀. ≻ 0 such that 𝐴.𝑀 +𝑀𝐴 ≺ 0.

𝑑
𝑑𝑡 𝑥% = 𝐴𝑥%

9



Convergence of TD-learning

• TD-learning with Linear Function Approximation [Tsitsiklis & Van Roy, 1997]

◦ Φ" = 𝜙 1 ,𝜙 2 ,… , 𝜙 𝑆
◦ 𝑃# 𝑠, 𝑠$ = ∑%𝑃 𝑠$ 𝑠, 𝑎 𝜋(𝑎|𝑠)
◦ 𝐷 = 𝑑𝑖𝑎𝑔 𝑑 , 𝑑 = 𝑑𝑃#, state stationary distribution

𝜃!"# = 𝜃! + 𝛼!𝜙 𝑠! [𝑟 𝑠! , 𝑎! + 𝛾𝜙 𝑠!"# .𝜃! − 𝜙 𝑠! .𝜃!]
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𝑑
𝑑𝑡 𝜃% − 𝜃∗ = 𝐴 𝜃% − 𝜃∗

𝐴 = Φ.𝐷 𝛾𝑃0 − 𝐼 Φ is Hurwitz if Φ is full rank.



Convergence of  Double TD-learning

• Double TD-learning with Linear Function Approximation [Lee & He, 2019]
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𝜃!"#1 = 𝜃!1 + 𝛼!𝜙 𝑠! 𝑟 𝑠! , 𝑎! + 𝛾𝜙 𝑠!"# .𝜃!2 − 𝜙 𝑠! .𝜃!1 + 𝛿(𝜃!2 − 𝜃!1)
𝜃!"#2 = 𝜃!2 + 𝛼!𝜙 𝑠! 𝑟 𝑠! , 𝑎! + 𝛾𝜙 𝑠!"# .𝜃!1 − 𝜙 𝑠! .𝜃!2 + 𝛿(𝜃!1 − 𝜃!2)

$
$%

𝜃% − 𝜃∗ = 𝐴 𝜃% − 𝜃∗ , 𝐴 = 𝐵 + 𝐶.𝐵𝐶,𝑤𝑖𝑡ℎ 𝐵 = −Φ.𝐷Φ 𝛾Φ.𝐷𝑃0Φ
𝛿𝐼 −𝛿𝐼

, 𝐶 = 0 𝐼
𝐼 0

𝐴 is Hurwitz if Φ is full rank, 𝛿 > 0.

Theorem. Under Robbins-Monro stepsize and assume the Markov chain under policy 𝜋 is ergodic, 
we have 

𝜃! → 𝜃∗ almost surely, as 𝑘 → ∞,
Here 𝜃∗ is the solution of the projected Bellman equation: Φ𝜃 = Π 𝑅0 + 𝛾𝑃0Φ𝜃 .



Stability of Nonlinear Systems

• Nonlinear System:

◦ Sufficiency but not necessity. 
◦ Application: tabular Q-learning  [Borkar & Meyn, 2000]
◦ Application: Q-learning with linear function approximation [Melo et al., 2008] [Wang & Giannakis, 2020]
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𝑑
𝑑𝑡 𝑥% = ℎ(𝑥%)

The origin is unique, globally asymptotically stable if  there exists a twice 
differentiable Lyapunov function 𝑉(𝑥) such that

𝑘# 𝑥 3 ≤ 𝑉 𝑥 ≤ 𝑘& 𝑥 3

𝑑𝑉
𝑑𝑥 ℎ 𝑥 ≤ −𝑘4 𝑥 3

for some positive constants 𝛼, 𝑘#, 𝑘&, 𝑘4.

[Khalil, 2002]



Stability of Linear Switching Systems

• Linear switching system:
𝑑
𝑑𝑡
𝑥" = 𝐴(&𝑥"

◦ coupling between continuous dynamics and discrete events (switching)
◦ 𝜎%: switching signal ∈ {1,2,⋯ ,𝑀}; {𝐴#, … , 𝐴5} subsystem matrices
◦ 𝜎% = 𝜎 𝑥% : state-feedback switching signal
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The origin is the unique globally asymptotically stable equilibrium point if and only if 
there exists a full column rank matrix 𝐿 and a family of NRD matrices {𝐴̅#, … , 𝐴̅5}
such that 

𝐿𝐴6 = 𝐴̅6𝐿, ∀𝜎 ∈ {1,2, … ,𝑀}. 

[Lin and Antsaklis, 2009]

Negative Row Dominant Diagonal (NRD) matrix A: 𝑎''+∑()' 𝑎'( < 0, ∀𝑖.



Switching System Model of Q-Learning

• Q-learning

• Dynamical system

◦ Greedy policy: 𝜋7!(𝑠) = argmax8𝑄% 𝑠, 𝑎
◦ Diagonal elements of 𝐷 : state-action distribution

◦ 𝑃 =
⋮
𝑃8
⋮
, 𝑃8=transition probability matrix for taking action 𝑎

◦ 𝛱0 ≔ ⋯ Γ8 ⋯ , Γ8 9,8" = 1 𝑖𝑓 𝜋 𝑠 = 𝑎′ and 0 otherwise

𝑄!"# 𝑠! , 𝑎! = 𝑄! 𝑠! , 𝑎! + α!(𝑟(𝑠! , 𝑎!) + 𝛾max8;
𝑄! 𝑠!"#, 𝑎′ − 𝑄! 𝑠! , 𝑎! )
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𝑑
𝑑𝑡 𝑄% − 𝑄∗ = 𝛾𝐷𝑃𝛱0#! − 𝐷 𝑄% − 𝑄∗ + 𝛾𝐷𝑃(𝛱0#! − 𝛱0∗)𝑄

∗



Switching System Model of Q-Learning

• Q-learning

• Dynamical system

𝑑
𝑑𝑡 𝑥% = 𝐴6(,!)𝑥% + 𝑏6(,!)

◦ 𝑥% = 𝑄% − 𝑄∗, 𝜎 𝑥% = 𝜓 𝜋7! , 𝜋7!(𝑠) = argmax8𝑄% 𝑠, 𝑎
◦ 𝜓: deterministic policy → integer

Affine switching system

𝑑
𝑑𝑡 𝑄% − 𝑄∗ = 𝛾𝐷𝑃𝛱0#! − 𝐷 𝑄% − 𝑄∗ + 𝛾𝐷𝑃(𝛱0#! − 𝛱0∗)𝑄

∗

𝑄!"# 𝑠! , 𝑎! = 𝑄! 𝑠! , 𝑎! + α!(𝑟(𝑠! , 𝑎!) + 𝛾max8;
𝑄! 𝑠!"#, 𝑎′ − 𝑄! 𝑠! , 𝑎! )
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Stability Analysis: Upper and Lower Comparison Systems

• Upper comparison system (linear switching system)

• Original affine switching system

• Lower comparison system (linear system)

𝑑
𝑑𝑡 𝑄% − 𝑄∗ = 𝛾𝐷𝑃𝛱0#! − 𝐷 𝑄% − 𝑄∗ + 𝛾𝐷𝑃(𝛱0#! − 𝛱0∗)𝑄

∗

𝑑
𝑑𝑡 𝑄% − 𝑄∗ = 𝛾𝐷𝑃𝛱0#! − 𝐷 𝑄% − 𝑄∗

≥

𝑑
𝑑𝑡 𝑄% − 𝑄∗ = 𝛾𝐷𝑃𝛱0#∗ − 𝐷 𝑄% − 𝑄∗

≥

16
Note 𝐴 6 = 𝛾𝐷 𝑃Π6 − 𝐼 𝑖𝑠 𝑁𝑅𝐷 ∶ 𝐴6 >> + ∑?@> 𝐴6 >? ≤ 𝛾 − 1 < 0, ∀𝜎.



Stability Analysis: Vector Comparison Principle 

𝑑
𝑑𝑡
𝑥" = 𝑓(𝑥") ≤

𝑑
𝑑𝑡
𝑥" = 𝑓 𝑥" ≤

𝑑
𝑑𝑡
𝑥" = 𝑓 𝑥"

)*+,-. /0*123*+4 /5/1,6

s→
t

s→
t

𝑥" → 0𝑥" → 0

𝑡

𝑥%

𝑥% 𝑥%

If ̅𝑓 and 𝑓 are globally Lipschitz continuous, ̅𝑓 is quasi-
monotone increasing, then 

𝑓 ≤ ̅𝑓, 𝑥' ≤ 𝑥̅' ⇒ 𝑥% ≤ 𝑥̅% , ∀𝑡 ≥ 0.

[Vector Comparison Principle]

𝑥% → 0

17

Linear system
𝐴 is Hurwitz

Linear switching system
𝐴 6 is 𝑁𝑅𝐷



Asymptotic Stability and Convergence 

• Other proofs
◦ The original proof [Watkins and Dayan, 1992]
◦ Stochastic-approximation-based approach [Jaakkola et al., 1994] [Tsitsiklis, 1994] 
◦ Finite-time analysis:  [Szepesvári, 1998][Even-Dar & Mansour, 2003]
◦ Recent work: [Qu & Wierman, 2020] [Li et al., 2020]

• Extensions:
◦ Target-based Q-learning algorithms
◦ Q-learning with linear function approximation 

18

Theorem. Under Robbins-Monro stepsize and ergodicity assumption, 
𝑄! → 𝑄∗ almost surely, as 𝑘 → ∞.
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Illustration 



Q-learning with Linear Function Approximation 

• Algorithm:

• Switching system:

• New sufficient condition: 

◦ Under the above condition, we can easily show that for 𝜃! → 𝜃∗ as 𝑘 → ∞.
◦ Less conservative than the Melo’s condition. 

𝜃!"# = 𝜃! + α!𝜙 𝑠! , 𝑎! [𝑟 𝑠! , 𝑎! + 𝛾max
8"

Φ𝜃! 𝑠!"#, 𝑎; − Φ𝜃! 𝑠! , 𝑎! ]

𝑑
𝑑𝑡
𝜃% = 𝛾Φ.𝐷𝑃Π0 A! Φ−Φ.𝐷Φ 𝜃% +Φ.𝐷𝑅

−𝜙>.𝐷𝜙> + 𝛾𝜙>.𝐷𝑃Π0∑𝜙? < 0, ∀ admissible 𝜋

20



Deep Q-learning  

• The use of target network is pervasive in DQN-like algorithms. 
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Online variable: 𝜽𝒕
Target variable: 𝜽𝒕;

𝜃"&'7 = 𝜃"&'

Target variable update

𝜃 ← 𝜃 − 𝛼∇A
1
2 𝑟 + 𝛾𝑚𝑎𝑥8"𝑄(𝑠;, 𝑎;; 𝜃%;) − 𝑄 𝑠, 𝑎; 𝜃 &

𝑳-times
Online variable update

𝜃"&' 𝜃"&'7 , 𝜃"&'
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Target-based Q-learning 

Averaging Q-learning

Double Q-learning 
(van Hasselt, 2010)

Periodic Q-learning 

Standard Q-learning 
(Watkins & Dayan 1992)

Target-based Q-learning

Lee and H., “Target-based temporal difference learning,” ICML, 2019. 
Lee and H., “Periodic Q-learning,” L4DC, 2020. 

Averaging TD learning (A-TD)

Double TD learning (D-TD)

Periodic TD learning (P-TD)

Classical TD learning 
(Sutton, 1988)

Target-based TD learning



The Roadmap
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Q-Learning

Nonlinear ODE

Affine switching system

Convergence

Asymptotic stability

𝑄*+,(𝑠, 𝑎) = 𝑄*(𝑠, 𝑎) − α*(𝑟 + 𝛾max%$ 𝑄* 𝑠$, 𝑎′ − 𝑄* 𝑠, 𝑎 )

𝑑
𝑑𝑡

𝑄- − 𝑄∗ = 𝛾𝐷𝑃𝛱#!" − 𝐷 𝑄- − 𝑄∗ + 𝛾𝐷𝑃(𝛱#!" − 𝛱#∗)𝑄
∗

𝑑
𝑑𝑡
𝑥- = 𝐴.(0")𝑥- + 𝑏.(0")

𝑥- → 𝑥∗
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Dynamical Systems Perspective for RL 

RL algorithms 
𝑑
𝑑𝑡 𝑥- = ℎ 𝑥-

Dynamical Systems (continuous/discrete)

𝑥!"# = 𝑥! + 𝛼!𝐻(𝑥! , 𝑠! , 𝑎! , 𝑠!"#)

TD learning (tabular, LFA) 

Q learning (tabular, LFA) 

RL with nonlinear FA

Time-invariant Linear System
Markov Jump Linear System 

Switched Affine System

Nonlinear System



Dynamical Systems Perspective for RL

• Advantages:
◦ Systematic and unified analysis 
◦ Rich control theory and tools
◦ No need for objective/gradients/regularizations
◦ Characterization of exact behavior 
◦ Tight conditions and weak assumptions 

• Challenges: 
◦ Stability of nonlinear systems
◦ Characterization of non-asymptotic behaviors 
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From Asymptotic Convergence to Asymptotic Covariance 

• Stochastic approximation algorithm:

• Central Limit Theorem:

𝜃% → 𝜃∗, almostly surely

𝑘 𝜃% − 𝜃∗ → 𝑁(0, Σ) in distribution

26

𝜃!"# = 𝜃! + 𝛼!ℎ 𝜃! + 𝜖!"#



Asymptotic Variance and Lyapunov Equation  

• Consider the linear stochastic approximation 

𝜃%&' = 𝜃% +
𝑔
𝑘 (𝐴 𝑌% 𝜃% + 𝑏 𝑌% )

◦ Assume 𝜃% → 𝜃∗ = 0
◦ 𝑌% is an irreducible aperiodic Markov chain, 𝐴 = 𝐸 𝐴 𝑌8 , Σ9 = ∑%:;8 𝐸[𝑏 𝑌% 𝑏 𝑌' <]
◦ Define the asymptotic covariance Σ8 ≔ lim

%→8
𝑛 𝐸[𝜃%𝜃%<]

27

If  '
;
𝐼 + 𝑔 𝐴 is Hurwitz, then Σ8 is the unique solution to the Lyapunov equation:

1
2 𝐼 + 𝑔 𝐴 Σ8 + Σ8

1
2 𝐼 + 𝑔 𝐴

< + 𝑔;Σ9 = 0

[Kushner and Yin, 2003; Chen et al., 2020]



Q-learning vs. Double Q-learning
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• Q-learning with LFA:

• Double Q-learning with LFA:

𝜃!"#1 = 𝜃!1 + 𝛽!𝛿!𝜙 𝑠! , 𝑎! [𝑟(𝑠! , 𝑎!) + 𝛾𝐻(𝜃!1, 𝜃!2 , 𝑠!"#) − 𝜙 𝑠! , 𝑎! .𝜃!1

𝜃!"#2 = 𝜃!2 + (1 − 𝛽!)𝛿!𝜙 𝑠! , 𝑎! [𝑟(𝑠! , 𝑎!) + 𝛾𝐻(𝜃!2 , 𝜃!1, 𝑠!"#) − 𝜙 𝑠! , 𝑎! .𝜃!2

𝜃!"# = 𝜃! + α!𝜙 𝑠! , 𝑎! [𝑟 𝑠! , 𝑎! + 𝛾𝐻(𝜃! , 𝜃! , 𝑠!"#) − 𝜙 𝑠! , 𝑎! .𝜃!]

𝐻 𝜃#, 𝜃&, 𝑠 = 𝜙 𝑠, argmax
8
𝜙 𝑠, 𝑎 .𝜃#

.
𝜃&,  𝛽!~Bernoulli

#
&

i.i.d.



Q-learning vs. Double Q-learning

• Folklore: double Q-learning helps reduce the maximization bias. 
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Example

[Sutton and Barto, 2018]



The Asymptotic Mean-Square Errors of Q-learning Algorithms 

◦ Q-learning: 𝐴𝑀𝑆𝐸 𝜃 ≔ lim
!→(

𝑘𝐸 𝜃! − 𝜃∗ &

◦ Double Q-learning: 𝐴𝑀𝑆𝐸 𝜃1 ≔ lim
!→(

𝑘𝐸 𝜃!1 − 𝜃∗
&

◦ Double Q-learning: 𝐴𝑀𝑆𝐸 𝜃2 ≔ lim
!→(

𝑘𝐸 𝜃!2 − 𝜃∗
&

◦ Double Q-learning with average estimator: 𝐴𝑀𝑆𝐸 A%"A&

&
≔ lim

!→(
𝑘𝐸 A'

%"A'
&

&
− 𝜃∗

&

Theorem  Set 𝛼! =
C
!
, 𝛿! =

&C
!

and assume both Q-learning and Double Q-learning converge. Under mild 
conditions, we have 

𝐴𝑀S𝐸 𝜃1 = 𝐴𝑀𝑆𝐸 𝜃2 ≥ 𝐴𝑀𝑆𝐸 𝜃 + 𝑐'𝑔

𝐴𝑀𝑆𝐸
𝜃1 + 𝜃2

2 = AMSE 𝜃

30

(𝑐2 > 0, 𝑔 > 0)



Proof Sketch 

• Lyapunov equation for  Q learning

• Lyapunov equation for Double Q learning: 

• Key observation:  Σ8> = 𝑉 𝐶
𝐶 𝑉 , by uniqueness of Σ8, we have '

;
(𝑉 + 𝐶) = Σ8.

◦ 𝐴𝑀𝑆𝐸 3$+3%

4
= ,

4
Tr 𝑉 + 𝐶 = 𝐴𝑀𝑆𝐸(𝜃). 

◦ 𝐴𝑀S𝐸 𝜃5 = 𝐴𝑀𝑆𝐸 𝜃6 > 𝐴𝑀𝑆𝐸 𝜃 due to Tr 𝑉 ≥ Tr 𝐶 .

31

#
&
𝐼 + 𝑔 𝐴 Σ( + Σ(

#
&
𝐼 + 𝑔 𝐴. + 𝑔&ΣD = 0,         𝐴 = Φ𝐷 𝛾𝑃Π0∗ − 𝐼 ΦE

#
&
𝐼 + 𝑔 𝐴F Σ(F + Σ(F

#
&
𝐼 + 𝑔 𝐴F. + 𝑔&ΣDF = 0,     𝐴F =

−Φ.𝐷Φ 𝛾Φ𝐷𝑃Π0∗Φ.

Φ𝐷𝑃Π0∗Φ. −Φ.𝐷Φ
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Baird’s Example
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GridWorld

𝐷

𝑆
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Sutton and Barto Example
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Observations

• Both from theoretical and numerical results: 

◦ Double Q-learning with the same stepsize converges slower than Q-learning; 

◦ Double Q-learning with twice stepsize can converge as fast as and even faster than Q-learning, 
but suffers from larger variance;

◦ When using average estimator as the output, Double Q-learning with twice stepsize obtains 
both faster convergence rate and smaller mean-squared error.

Is Double Q learning provably more efficient than Q-learning?



From asymptotics to non-asymptotics
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Finite-time 
Convergence

• TD-learning with LFA
[Srikant & Ying, 2019]
[Dalal et al., 2018] [Bhandari et al., 2019]  
[Lakshminarayanan & Szepesvári, 2018]

• Neural TD-learning
[Cai et al, 2019; Cayci et al.,  2021]

• Asynchronous Q-learning
[Szepesvári, 1998][Even-Dar & Mansour, 2003]
[Qu & Wierman, 2020] [Li et al., 2020]

• Q-learning with LFA
[Chen et al., 2019] [Wang & Giannakis,2020]

• Double Q-learning
[Xiong et al, 2020]

• Neural Q-learning 
[Xu and Gu, 2020]

Asymptotic Convergence 

• TD-learning with LFA
[Tsitsiklis & Van Roy, 1997]

• Double TD-learning with LFA
[Lee & He, 2019]

• Synchronous Q-learning
[Borkar & Meyn, 2000]

• Asynchronous Q-learning
[Jaakkola et al.,1994][Tsitsiklis, 1994]

• Q-learning with LFA
[Melo, Meyn, & Ribeiro, 2008]

• Greedy-GQ algorithm
[Maei et al., 2010]

[Lee & He, 2020]

[Lee & He, 2020]

Tight Error Bound

• TD-learning with LFA
[Hu & Syed, 2019]
[Devraj & Meyn, 2017]
[Chen et al., 2020]

• Q-learning & Relative Q-learning
[Devraj & Meyn, 2020]

• Double Q-learning 
[Weng et al., 2020]
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Summary

Existing rich control theory can help 

• Build theoretical convergence of  value-based RL algorithms 
• Provide unified framework, tight characterization and error bounds 
• Potentially design principled, data-efficient, robust, and  extensible RL algorithms

Open Questions

• Nonlinear function approximations?
• Policy gradient methods? 
• Global optimality?
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